
3/2/24, 7:59 AM Functions that return the size of a required buffer generally return upper bounds, not tight bounds - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240214-00/ 1/2

February 14, 2024

Functions that return the size of a required buffer
generally return upper bounds, not tight bounds

devblogs.microsoft.com/oldnewthing/20240214-00

Raymond Chen

There are a number of functions in Windows that are part of a three-phase operation:

1. Request the size of a buffer needed to receive some data.
2. Allocate a buffer of that size.
3. Call the function again with that buffer.

When you ask for the required size of a buffer, it is not uncommon for the function to return a
value that larger than the actual value you get from step 3, when you ask for the data to be
placed in the buffer. Why is that? Why did the first function lie to me?

Well, in general, you have to be prepared for the second call to return a different size from
the first call because of a time-of-check-to-time-of-use (TOCTTOU) race condition. After you
request the size of the buffer, the data may change, and when you get around to requesting
the data to be placed in the buffer, it’s possible that you get a different result size anyway, not
because anybody was lying to you, but because the underlying data is different from what it
was when you asked the first time.

Given that the caller has to be prepared for the size to change anyway, the “how big of a
buffer do I need” call can return an over-estimate of the required size, since that will allow
the second call for the data to succeed (assuming the data hasn’t changed). And giving an
over-estimate is often much easier than giving an exact value.

For example, a call to Get Window Text LengthA can’t just call Get Window Text LengthW and
assume that the length in bytes is always the same as the length in UTF-16 code units. One
of the UTF-16 code units may require two bytes to represent in the ambient 8-bit character
set; alternatively, a surrogate pair of UTF-16 code units might collapse down to a single 8-bit
character (probably a question mark). Doing the calculations down to the byte would mean
allocating temporary memory, reading the window text in UTF-16 into the temporary buffer,
then doing the character set conversion to bytes to get the true length, and then freeing the
temporary buffer.

This is a lot of wasted work, because the caller is just going to do the same thing!

https://devblogs.microsoft.com/oldnewthing/20240214-00/?p=109400


3/2/24, 7:59 AM Functions that return the size of a required buffer generally return upper bounds, not tight bounds - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240214-00/ 2/2

So don’t be surprised when a “get required buffer size” call returns a value that is larger than
necessary. Given the intended usage pattern, all these calls really need to do is give an
upper bound on the buffer size, not the precise buffer size.

Bonus chatter: As a specific example, the Reg Query Info Key gives the maximum lengths of
all values and subkeys, but those are upper bounds and not tight upper bounds. Character
set conversion estimates are not the only thing at play. Recalculating the exact maximum
length when the longest value or subkey is deleted would require either a linear search
through the items (to find the newest “longest” item) or maintaining a separate index which
keeps the values and subkeys sorted by descending length, so that the new “longest item”
can be found quickly. The internal registry code doesn’t do either of those things today. It just
keeps track of a high water mark. The value you receive might be too big, but it will never be
too small.


