
1/23

Javier Vicente

Qakbot | ThreatLabz
zscaler.com/blogs/security-research/tracking-15-years-qakbot-development

Concerned about VPN vulnerabilities? Learn how you can benefit from our VPN migration offer including
60 days free service.

Talk to an expert
Zscaler Blog

Get the latest Zscaler blog updates in your inbox

Subscribe

Security Research

Tracking 15 Years of Qakbot Development

JAVIER VICENTE - Sr. Staff Security Researcher
January 31, 2024 - 16 min read

https://www.zscaler.com/blogs/security-research/tracking-15-years-qakbot-development
https://www.zscaler.com/demo/zero-trust-solution-for-ivanti-vpn-exploit
https://www.zscaler.com/blogs?type=security-research
https://www.zscaler.com/author/jvicente

2/23

Introduction

Qakbot (aka QBot or Pinkslipbot) is a malware trojan that has been used to operate one of the oldest and
longest running cybercriminal enterprises. Qakbot has evolved from a banking trojan to a malware implant
that can be used for lateral movement and the eventual deployment of ransomware. In August 2023, the
Qakbot infrastructure was dismantled by law enforcement. However, just several months later in December
2023, the fifth (and latest) version of Qakbot was released, marking more than 15 years of development. In
this blog, we will analyze Qakbot from the first version dating back to 2008 through the most recent version
that continues to be updated as of January 2024. Our analysis demonstrates the threat actor behind
Qakbot is resilient, persistent, and innovative.

Key Takeaways

Qakbot originated in 2008 as a banking trojan designed to steal credentials and conduct ACH, wire,
and credit card fraud.
In recent years, Qakbot has become an initial access broker delivering Cobalt Strike for lateral
movement and ultimately resulting in second-stage infections including ransomware like BlackBasta.
Over the years, Qakbot’s anti-analysis techniques have improved to evade malware sandboxes,
antivirus software, and other security products.
The malware is modular and can download plugins that enable it to dynamically add new
functionality.
The threat group behind Qakbot has now released five distinct versions of the malware with the latest
release in December 2023.

A Brief History of Qakbot

ThreatLabz researchers have been tracking Qakbot for more than a decade and our analysis started with
samples that date back to 2008. These early versions of Qakbot contained a date timestamp rather than a
version number. However, we will refer to these samples as version 1.0.0 for clarity and consistency with
subsequent versions. At that time, Qakbot leveraged a dropper with two embedded components in the
resource section that consisted of a malicious DLL and a tool to inject the DLL into running processes. The
Qakbot DLL implemented a wide variety of features including: a SOCKS5 server, stealing passwords,
harvesting web browser cookies, and spreading via SMB. These early versions were heavily developed
and even had a feature to report crash dumps. In 2011, Qakbot introduced a versioning system that started
with 2.0.0 that has signified major developmental milestones over time. The Qakbot major version number
is a three-digit hexadecimal value with 0x500 (or 5.0.0) being the most recent.

Qakbot was largely used for banking fraud until 2019, when the threat actor pivoted to serving as an initial
access broker for ransomware including Conti, ProLock, Egregor, REvil, MegaCortex, and BlackBasta.

The following timeline illustrates the key developments for each version of Qakbot.

https://www.bleepingcomputer.com/news/security/prolock-ransomware-teams-up-with-qakbot-trojan-for-network-access/
https://www.malwarebytes.com/blog/news/2019/06/megacortex-continues-trend-of-targeted-ransomware-attacks
https://www.justice.gov/opa/pr/qakbot-malware-disrupted-international-cyber-takedown

3/23

4/23

Each version of Qakbot represents a snapshot in time and is indicative of the threat landscape during that
period. For instance, early versions contained hardcoded command-and-control (C2) servers. As time
progressed, law enforcement and malware researchers worked successfully with domain registrars to
suspend malicious domains. In response, the Qakbot threat actor added network encryption and
implemented a solution to remove the C2 server’s single point of failure by adding a domain generation
algorithm (DGA). While a DGA addressed the single point of failure issue, it also created significant noise
when querying for a large number of domains. As a result, the Qakbot developer devised a new multi-tiered
architecture that leveraged compromised systems to act as proxy servers that relay network traffic between
other infected systems and the backend C2 infrastructure. This design update addressed the single point of
failure problem, reduced network traffic, and effectively hid the subsequent C2 tiers.

In the following sections, we will analyze key areas where Qakbot has evolved significantly including anti-
analysis techniques, network communication, and the implementation of a modular design.

Anti-Analysis Techniques

Qakbot has implemented anti-analysis techniques from the beginning of its development including string
obfuscation, API obfuscation, and malware sandbox evasion.

String obfuscation

Every version of Qakbot since its inception has obfuscated the malware’s important strings with a simple
XOR algorithm. The XOR key (and most recently, the derivation of an XOR key) is used to decrypt strings.
Moreover, the reference structure to the strings has also evolved across versions.

In the first two versions (1.0 and 2.0), the malware decrypted a block of strings from the data section,
overwriting the original encrypted block, and the unencrypted strings remained in memory as shown in
Figure 1. This simple design was likely an attempt to evade static antivirus signatures.

5/23

Figure 1. Early versions of Qakbot string obfuscation

In later versions of Qakbot, the XOR key length was significantly increased, and strings were decrypted
and copied to a newly allocated buffer. Qakbot version 5.0 made perhaps the most significant change to
the string encryption algorithm. The strings are still encrypted with a simple XOR key. However, the XOR
key is no longer hardcoded in the data section. Instead the XOR key is encrypted with AES, where the AES
key is derived by performing a SHA256 hash of a buffer. A second buffer contains the AES initialization
vector (IV) as the first 16 bytes, followed by the AES-encrypted XOR key. Once the XOR key has been
decrypted, the block of encrypted strings can then be decrypted as shown in Figure 2.

6/23

Figure 2. Qakbot 5.0 string decryption

API obfuscation

In versions 1 and 2, Qakbot carried a list of Windows API names used by the malware in the encrypted
strings table. After the strings table was decrypted, the code would dynamically resolve the address of
each API at runtime and then initialize a table of pointers that could then be used by Qakbot to invoke the
corresponding function when required. This implementation made it harder for malware researchers and
antivirus software to statically determine the APIs used at runtime.

In more modern versions, the Qakbot developer further obfuscated the use of APIs by resolving the imports
using a CRC32 hash rather than a string. At first, Qakbot used the CRC hashes of the API name directly,
and subsequent versions performed an XOR with a hardcoded value and the CRC hash. Figure 3 shows
an example of this dynamic API import hashing algorithm.

Figure 3. Example Qakbot API obfuscation

Junk code

Over time, Qakbot has introduced blocks of code that are deliberately non-functional to defeat static
antivirus signatures as shown in Figure 4. In the example below, a block of junk code was added prior to an
RC4 initialization routine.

7/23

Figure 4. Example of Qakbot junk code block in an RC4 initialization function

Anti-sandbox techniques

Qakbot has implemented numerous detection mechanisms to identify researcher environments and
malware sandboxes since the earliest versions. In particular, Qakbot has attempted to identify processes,
system artifacts, and the underlying virtual machines associated with an analysis environment. Figure 5

8/23

shows an example of Qakbot’s implementation to identify whether an infected system is running on a
VMWare virtual machine from a sample dating back to September 2009.

Figure 5. Qakbot implementation to identify VMWare

Qakbot has continuously added code to identify analysis environments by checking system information
such as the name of BIOS vendors, processes, drivers, etc. for strings as shown in Table 1.

vmxnet vmx_svga vmrawdsk vmdebug vm3dmp

vSockets srootkit sbtisht ansfltr Xen

XENVIF XENSRC XENCLASS XENBUS Vmscsi

VirtualBox Virtual
Machine

Virtual HD VirtIO VRTUAL

VMware server
memory

VMware SVGA VMware SCSI VMware
Replay

VMware
Pointing

VMware Accelerated VMware VMW VMAUDIO VIRTUAL-DISK

VBoxVideo QEMU PROD_VIRTUAL_DISK MS_VM_CERT CWSandbox

20202020

Table 1. Qakbot virtual machine string-based detections

The following processes in Table 2 are frequently used by malware analysts and are also detected by
Qakbot:

frida-winjector-
helper-32.exe

packetcapture.exe filemon.exe proc_analyzer.exe sniff_hit.exe

9/23

frida-winjector-
helper-64.exe

capturenet.exe procmon.exe sysAnalyzer.exe sysAnalyzer.exe

tcpdump.exe qak_proxy idaq64.exe sniff_hit.exe BehaviorDumper.exe

windump.exe dumpcap.exe loaddll32.exe joeboxcontrol.exe processdumperx64.exe

ethereal.exe CFF Explorer.exe PETools.exe joeboxserver.exe anti-virus.EXE

wireshark.exe not_rundll32.exe ImportREC.exe ResourceHacker.exe sysinfoX64.exe

ettercap.exe ProcessHacker.exe LordPE.exe x64dbg.exe sctoolswrapper.exe

rtsniff.exe tcpview.exe SysInspector.exe Fiddler.exe sysinfoX64.exe

FakeExplorer.exe apimonitor-x86.exe idaq.exe dumper64.exe user_imitator.exe

Table 2. Malware analyst process names detected by Qakbot

Around version 404.510, the malware developer added extraneous exports to the Qakbot stager DLL to
confuse malware sandboxes as shown in Figure 6. In this example, the export name Wind (or ordinal #458)
is the actual entry point.

Figure 6. Qakbot 404.510 sample with 458 entries in the exports directory

Network Communication

10/23

Qakbot has leveraged HTTP for C2 communication from the beginning. However, the network protocol on
top of HTTP has changed significantly over the years with encryption, RSA signature verification, and the
addition of a JSON-based message format.

Network protocol and encryption

Qakbot has continuously updated its message protocol with version 19 being the latest. The protocol
specifies the format of the message. In version 3, Qakbot sent requests in a format similar to the following:

However, this protocol format was later replaced with a JSON-based protocol with integer key values that
denote specific fields as shown below:

This encoding adds a layer of obfuscation for each of the message fields.

Qakbot’s network encryption has used RC4 with the key consisting of 16 random bytes concatenated with
a hardcoded salt and hashed using SHA1. The most recent version of Qakbot now uses AES encryption
with the key consisting of 16 random bytes concatenated with a hardcoded salt and hashed using SHA256.
After encryption, the data is Base64 encoded and prepended to a variable in the body of an HTTP POST
request.

Domain generation algorithm

The first versions of Qakbot only used hardcoded C2s as shown in Figure 7.

11/23

Figure 7. Example of hardcoded Qakbot C2s

However, in version 2.0.1 a DGA was added as a backup C2 channel in the event that the hardcoded C2s
were unreachable. Qakbot used a time-based DGA to generate up to 5,000 C2 domains for a specific date
interval as shown in Figure 8.

Figure 8. Qakbot DGA code

Interestingly, some versions of Qakbot would generate fake domains if an analysis environment was
detected in an effort to mislead researchers, as shown in Figure 9.

https://bin.re/blog/the-dga-of-qakbot/

12/23

Figure 9. Example of Qakbot generating fake domains if network monitoring tools were detected

Data exfiltration to compromised FTP servers

Qakbot versions 3.0.0 and earlier used compromised FTP servers to exfiltrate data rather than sending the
data directly to their C2 server. The FTP credentials were stored in Qakbot’s configuration files as shown
below:

This design had an inherent weakness since anyone with the FTP credentials could potentially have
accessed and recovered the stolen information. To address this weakness, Qakbot was later updated to
send the stolen data directly to Qakbot’s C2 infrastructure.

Using compromised systems as relays

13/23

After version 3.2.4.8, Qakbot ceased using the DGA. Instead, Qakbot started using compromised systems
themselves as C2 servers, and embedded a list of IP addresses and port numbers in the malware
configuration. Before version 4.0.3.2, the configuration file (stored as an encrypted resource) contained the
list of IP addresses in a text-based format:

However, after version 4.0.3.2, the Qakbot C2 list evolved into a binary format as shown in Figure 10.

Figure 10. Qakbot C2 list binary format

Commands

In the first versions of Qakbot, the server sent commands in a descriptive text-based format. The following
commands were supported in Qakbot versions 1.0 and 2.0:

certssave
ckkill
cksave
clearvars
cron
cronload
cronsave
forceexec
ftpwork
getip
install3
instwd
kill

14/23

killall
loadconf
nbscan
psdump
reload
rm
saveconf
sleep
socks
sxordec
sxorenc
sysinfo
thkill
thkillall
uninstall
update
update_finish
uploaddata
var
wget

In order to obfuscate these commands, the Qakbot author replaced these string commands with integer
values starting in the later builds of version 3.

Addition of RSA signature verification

Qakbot version 3.0.0.443 introduced RSA digital signatures (initially using the MatrixSSL library) to prevent
tampering. This was especially important when the DGA and compromised systems were used as C2
servers.

Modular Structure

The design of Qakbot has changed significantly from versions 1 through 5. In particular, the malware has
become more modular with the ability to dynamically add new features without releasing a new version of
Qakbot. Modern versions use a lightweight stager responsible for initializing, maintaining persistence, and
establishing C2 communication to request commands and modules.

Embedded resources

Prior to version 4.0.2.19, Qakbot frequently used the resource section to store configuration information
(such as web injects and application parameters) as well as DLLs that performed malicious behavior.
Initially, in version 1.0, these resources were not encrypted. However, Qakbot’s code evolved with various
encryption algorithms to protect these resources.

Qakbot version 2.0 implemented a custom XOR-based algorithm as shown in Figure 11.

15/23

Figure 11. Custom encryption algorithm used by Qakbot 2.0 to protect resources

In this example, the offset 0x7 in the encrypted resource contained a WORD that was the size of the XOR
key. The XOR key was located at offset 0x9 in the resource. Encrypted data was then concatenated after
the XOR key. Python code that replicates this algorithm is shown below:

Qakbot version 3.0 and later used an RC4-based algorithm to decrypt the resources.

The initial 0x14 bytes in the resource served as the RC4 key for decrypting the remaining data. A slightly
modified version of the BriefLZ library was later added to compress specific resources to reduce the overall
file size.

16/23

In version 4.0.2.1, the resource encryption algorithm changed slightly. The first 0x14 bytes of the resource
were no longer used as an RC4 key. Instead, the code contained a salt value in the encrypted strings table
that was then hashed using SHA1 to derive the RC4 key used to decrypt the resource. In version 4.0.3.902
this was improved again, which added two layers of RC4 to decrypt the resource. The first RC4 layer was
decrypted using the SHA1 hash of the salt string. The second layer used the first 0x14 bytes of the result
as the key to decrypt the following data. Example Python code for this algorithm is shown below:

Plugins

In version 4.0.1, Qakbot was modified to split various functionality into separate modules. This allowed
Qakbot to use a stager to download additional modules from Qabkot’s C2 servers to add functionality on-
demand. Qakbot has built modules to hook web browsers, steal email addresses (and email), harvest
stored credentials, deploy Cobalt Strike, and act as a C2 server that relays traffic between other infected
systems and the backend infrastructure.

Conclusion

Qakbot is a sophisticated trojan that has evolved significantly over the past 15 years, and remains
remarkably persistent and resilient. Despite the significant disruption to Qakbot in August 2023, the threat
group remains active and recently updated their codebase to support 64-bit versions of Windows, improved
the encryption algorithms, and added more obfuscation. This demonstrates that Qakbot will likely remain a
threat for the foreseeable future and ThreatLabz will continue to add detections to protect customers.

Zscaler Cloud Sandbox

17/23

Zscaler’s multilayered cloud security platform detects payloads with the following threat names:

Win32.Banker.Qakbot

Indicators Of Compromise (IOCs)

Date Version Sample Hash

2008-08-28 1.0.0 34588857312371e4b789fb49d2606386

2009-11-16 1.0.0 8c33780752e14b73840fb5cff9d31ba1

2009-12-29 1.0.0 37bbdaf1d14efa438f9ff34d8eeaa5e7

2010-10-12 1.0.0.63 d02252d88c3eab14488e6b404d2534eb

2011-05-12 2.0.0.685 b9e23bc3e496a159856fd60e397452a0

2012-05-31 2.0.1.1432 570547fa75c15e6eb9e651f2a2ee0749

2013-07-08 2.0.1.1457 42e724dc232c4055273abb1730d89f28

2014-06-24 2.0.1.2544 9160ea12dbce912153b15db421bb87da

2015-01-28 2.0.1.2674 945ba16316c8a6a8428f0b50db0381dc

https://threatlibrary.zscaler.com/threats/40daeb53-8cce-4180-b6a1-f0b38c437fa0?_gl=1*1jt80mx*_ga*NDc5ODg5NTM1LjE2ODQ5Njc0NDA.*_ga_10SPJ4YJL9*MTcwNjU4MzkxOS4xMjkuMC4xNzA2NTgzOTIxLjU4LjAuMA..&_ga=2.33087166.1095214624.1706553046-479889535.1684967440

18/23

Date Version Sample Hash

2015-12-17 3.0.0.116 dca0ef26493b9ac3172adf931f1a3499

2016-01-04 3.0.0.180 6718c6af4b89cffd9b6e0c235cf85bd2

2016-01-04 3.0.0.275 8fbb43dc853d0b95829112931493fe22

2016-01-13 3.0.0.262 72125013ac58d05adb32b7406b02c296

2016-01-29 3.0.0.322 3b4a2e984a51210d0594c9b555ba4e0d

2016-02-09 3.0.0.333 f952dc1e942ebdfb95a2347263265438

2016-02-12 3.0.0.352 b849381ab6a4e97d32580bb52d15cb7d

2016-03-08 3.0.0.443 dc8b137d5d61b23dbbb6085ce46bfcdb

2016-04-05 3.0.0.468 327a5e491d6db899d9db4c6bdc8f5367

2016-04-05 3.0.0.473 e3b0e54777ca9fd9863e3563a1b7dd59

2016-04-06 3.0.0.506 2e9261e75e15540ef88327a480a5b10e

2016-04-26 3.0.0.580 a472b9dd64198d739c6e415bbcae8a6f

2016-05-19 3.0.0.739 8609e6e4d01d9ef755832b326450cbe9

2016-06-01 3.0.0.743 a7cc19cde3a1a78b506410e4ffafdbef

2017-04-27 3.1.0.723 581016035f95327e7e1daac3ad55ae0e

2017-05-16 3.1.0.733 361d46f32a93786b34b2ac225efc0f79

2018-02-06 3.2.2.381 89e6f171c29255d6b4490774c630ad14

2019-09-16 3.2.3.91 ff186a1ef9e83c229940ff2dd4556eaf

2020-01-22 3.2.4.8 bea66da7088bd20adbfed57cf350a6a4

2020-01-22 3.2.4.8 1cd7a95064515625ad90464a65ea4d94

19/23

Date Version Sample Hash

2020-03-03 3.2.4.53 08c51514a42eec6ccbbc7a09a8258419

2020-03-20 3.2.4.70 d8ff9d18cd622c545d21b199a2d17594

2020-04-01 3.2.4.75 2e658f5fa658651331cb5b16447bdbe2

2020-04-29 3.2.4.136 ca22283396dbe21fa2ef5e27c85ffae6

2020-05-07 3.2.4.141 e9d0e767a5c5284ab33a3bb80687cf63

2020-05-07 3.2.4.141 d8841201c9d32b5e885f4d035e32f654

2020-05-28 3.2.4.401 82d7c5ea49c97059bbec02161b36f468

2020-08-07 3.2.5.42 163ee88405bccc383c7b69c39028bf9a

2020-08-07 3.2.5.42 acf65632b7cdc40091daec58bf8830bc

2020-08-11 3.2.5.43 455c543243f5216e21ba045814311971

2020-08-11 3.2.5.43 cfc77e4421d830e73c6f6040a4baedd4

2020-11-03 3.2.5.83 40a9bdac882285ab844917d8b5b75188

2020-11-24 4.0.1.29 6b1771b883c0b3ffdc3f5923f45c1f93

2020-12-15 4.0.1.138 0a3caa2845251b8fb5ab72f450edd488

2021-03-12 4.0.1.194 4a6e7f055d5bf4fd6d2a401c1b3d18ab

2021-04-12 4.0.2.1 dc2acf1704456880208146c91692cfc8

2021-04-15 4.0.2.12 3ca1f0e708283f21c9a10ef4acf40990

2021-04-15 4.0.2.12 1e71ea79c5a70bb8c729037132855b5a

2021-04-22 4.0.2.12 66a87dbc24af866849646911f4841a28

2021-04-29 4.0.2.68 25984af48fa27ec36bd257f8478aa628

20/23

Date Version Sample Hash

2021-04-29 4.0.2.68 c1849c1ee3b8146c6fb836dae0b64652

2021-05-06 4.0.2.68 d45e04df3c9270a01e9fb9e4e8006acc

2021-09-20 4.0.2.318 9a1c1497428743b4e199f2583f3d8390

2021-09-27 4.0.2.363 0865757dfe54c2d01c5cef5bfd3162c5

2021-09-27 4.0.2.363 c6dea1f4e6ee1ed4c0383cd1af456649

2021-11-03 4.0.3.1 1d4952cbe998312fd2bf810535db8a20

2021-11-03 4.0.3.1 6cce1ec83d1428de9fcb0c3791efabd1

2021-11-04 4.0.3.2 e111d982dc0c12f23fa3f446d674600b

2021-11-04 4.0.3.2 751f7d8ad6b2308cd1750fc23f606b53

2021-12-09 4.0.3.10 8bb4208a50c041f9cdfc26815905eab3

2022-02-10 4.0.3.490 bcb8e64c5a69c7a572ca34450712fb2f

2022-02-14 4.0.3.491 54e3f20f74c1089e89841798ffaac084

2022-02-14 4.0.3.503 95adeb6a1c1e0a9d9ee4ecafb6079b37

2022-02-15 4.0.3.509 da206d25fddf3286f42ec7626d8bb676

2022-02-18 4.0.3.532 3ba490216d4cdf92661444d896fefac3

2022-02-24 4.0.3.549 8fa26ff07c3b5e1653e55b8a567b7623

2022-02-24 4.0.3.549 1253695c63136edb1f6b37bbfd83db55

2022-04-06 4.0.3.573 2853985cab3c5b83eec38ae1f3a890be

2022-04-29 4.0.3.573 5e7deb4acb4429498693bc45db68978a

2022-05-04 4.0.3.674 2273dd59ca71c4f078cab09d93093294

21/23

Date Version Sample Hash

2022-05-04 4.0.3.675 40d5e775a52c94842c97d012eb94efdc

2022-05-04 4.0.3.683 f1d47a4dc1d11b17e51419299dc282e4

2022-05-12 4.0.3.684 2f17bd9f4b9edd91a7fd80ef32981f70

2022-05-18 4.0.3.686 7dcbd74778754eee85810a4393d8e3ef

2022-05-18 4.0.3.688 e9e9d194f3ee9822852309cc83455eea

2022-05-23 4.0.3.689 019117f66e43de489b3ff56377f9907b

2022-05-24 4.0.3.690 28f84ffa14c7ef3936a00d3bd751bdb3

2022-06-07 4.0.3.694 d88ee89344d04f83eacd3614785560ef

2022-08-31 4.0.3.780 3ff9d9dbf8c7a6865faeb43188afa6b4

2022-09-06 4.0.3.858 3e86ac10b4e7d818e0f410130bb7f237

2022-09-08 4.0.3.860 377acb7149fdfa56c090d9a12619a53c

2022-09-15 4.0.3.892 e5ebdec7417ad847e4325c4114e41809

2022-09-20 4.0.3.894 c23d2cd7d10a5f88032ddfcab4cfe146

2022-09-28 4.0.3.895 050ce5fb25ffd3e907a5c81a6711fcea

2022-10-04 4.0.3.914 b857efb30d9e35bc83a294580ad8cc3a

2022-10-10 4.0.3.967 6dc027269262b93351633eb8af4623ef

2022-10-11 4.0.3.973 e5eb07b009ca666f91ef5fe48269ca52

2022-10-25 4.0.3.1051 0971b8e78fcc6f9158e279376116c8c4

2022-10-26 4.0.4.2 4fbebc9879ec1f95e759cb8b5d9fb89d

2022-10-28 4.0.4.14 66a0741f8f43b584e387459b367097c1

22/23

Date Version Sample Hash

2022-10-31 4.0.4.20 6d61a88890be4ab5116cb712ff7788f4

2022-11-08 4.0.4.26 da75924c717524a8d17de126f8368ec4

2022-11-08 4.0.4.27 5971c4a485e881268ca28f24fdedc4e5

2022-11-16 4.0.4.30 22e45a212998d2ee264b6756b2972901

2022-11-28 4.0.4.46 accc6d9ba88040c89df34ef1749944d1

2022-12-13 4.0.4.52 22b3cb9b0bacd525a83aab5b1a853f63

2022-12-20 4.0.4.60 bebebd4e16a88f43f16e4c6c811c9894

2022-12-20 4.0.4.62 cafb7b2f8383cf9686f144dc2082f287

2022-12-22 4.0.4.66 6e3b4252903c0f3a153e011445ad2179

2023-01-31 4.0.4.432 3e3bc981a7fdbae10b40cd6683edacbb

2023-01-31 4.0.4.432 a12dd4324bbf1129d9fae1b3d1e6b9ca

2023-05-02 4.0.4.1035 ebec03d53d716cd780c92c5c29a95e6b

2023-05-10 4.0.4.1038 5e4c95b2c1b14a8a0f425576189fae60

2023-12-11 5.0.0.326 8aec3f3ef66e4ff118bfdab1d031eadb

2023-12-13 5.0.0.361 46e169516479d0614b663f302b5d1ace

2023-12-19 5.0.0.370 795319d48ce1f680699beb03317c6bff

2024-01-22 5.0.0.484 de1d9ed6da4f34b4444b13442aac5033

2024-01-22 5.0.0.486 f382d0f92221831eeb39c108f8ccfa26

Thank you for reading

23/23

Was this post useful?

Yes, very!Not really

Get the latest Zscaler blog updates in your inbox

By submitting the form, you are agreeing to our privacy policy.

https://www.zscaler.com/privacy/company-privacy-policy

