
1/31/24, 4:58 PM Smoothing over the differences (and defects) in the various implementations of IMemory Buffer - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240130-00/ 1/3

January 30, 2024

Smoothing over the differences (and defects) in the
various implementations of IMemory Buffer

devblogs.microsoft.com/oldnewthing/20240130-00

Raymond Chen

We saw last time that each unhappy implementation of IMemory Buffer is unhappy in its own
way. How can you avoid tripping over all of these differences and defects?

Fortunately, all of the implementations satisfy the following minimum requirements:

The underlying memory is freed when the IMemory Buffer and all IMemory Buffer -
References have been closed or destructed.
The objects are reliable provided you call only one method at a time.

We can operate within these minimum requirements and treat it as an external memory
buffer that is wrapped inside our Custom Memory Buffer.

winrt::array_view<uint8_t> GetView(
 winrt::IMemoryBufferReference const& reference)
{
 uint8_t* buffer;
 uint32_t size;
 winrt::check_hresult(reference.as<
 ABI::Windows::Foundation::IMemoryBufferByteAccess>()->
 GetBuffer(&buffer, &size));
 return { buffer, size };
}

We start with a generally useful function that obtains the buffer behind an IMemory Buffer -
Reference and returns it in the form of an array_view<uint8_t>.

https://devblogs.microsoft.com/oldnewthing/20240130-00/?p=109336
https://devblogs.microsoft.com/oldnewthing/20240129-00/?p=109325
https://devblogs.microsoft.com/oldnewthing/20240129-00/?p=109325

1/31/24, 4:58 PM Smoothing over the differences (and defects) in the various implementations of IMemory Buffer - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240130-00/ 2/3

// Takes ownership of the IMemoryBufferReference
winrt::IMemoryBuffer WrapAsMemoryBuffer(
 winrt::IMemoryBufferReference const& reference)
{
 return CreateCustomMemoryBuffer(
 GetView(reference),
 [reference]
 {
 reference.Close();
 });
}

The Wrap As Memory Buffer method takes an IMemory Buffer Reference and wraps it inside our
Custom Memory Buffer. We call GetView only once, and it never happens concurrently with the
Close of the buffer, so we avoid any multithreaded race conditions.

Basically, we treat IMemory Buffer Reference as just another source of memory with a cleanup
function. That the memory source happens to be the same family as the wrapper we are
producing is just a coincidence.

// Does not take ownership of the IMemoryBuffer
winrt::IMemoryBuffer WrapMemoryBuffer(
 winrt::IMemoryBuffer const& buffer)
{
 return WrapMemoryBuffer(buffer.CreateReference());
}

This overload of Wrap Memory Buffer uses an IMemory Buffer as the source. It just creates a
reference from the IMemory Buffer and then wraps that reference.

Note that the IMemory Buffer overload does not take ownership of the IMemory Buffer, since it
never closes it. This is a weird asymmetry that is bound to cause confusion. Maybe it should
close the IMemory Buffer?

// Takes ownership of the IMemoryBuffer
winrt::IMemoryBuffer WrapMemoryBuffer(
 winrt::IMemoryBuffer const& buffer)
{
 auto reference = buffer.CreateReference();
 buffer.Close();
 return WrapMemoryBuffer(reference);
}

Alternatively, we can ask WIL to close the buffer.

1/31/24, 4:58 PM Smoothing over the differences (and defects) in the various implementations of IMemory Buffer - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240130-00/ 3/3

// Takes ownership of the IMemoryBuffer
winrt::IMemoryBuffer WrapMemoryBuffer(
 winrt::IMemoryBuffer const& buffer)
{
 auto close = wil::scope_exit([&] { buffer.Close(); });
 return WrapMemoryBuffer(buffer.CreateReference());
}

But maybe the function name in both cases should be something like Wrap Memory Buffer And -
Take Ownership? I’m not sure. You can decide.

