
1/31/24, 4:58 PM How can I expose a pre-existing block of memory as a Windows Runtime object without copying the data? - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240126-00/ 1/7

January 26, 2024

How can I expose a pre-existing block of memory as a
Windows Runtime object without copying the data?

devblogs.microsoft.com/oldnewthing/20240126-00

Raymond Chen

Let’s implement an IMemoryBuffer. The basic idea is that the IMemoryBuffer object controls
the memory, and it grants access to the memory by handing out objects which implement
IMemoryBufferReference.

Here’s an implementation using C++/WinRT. We start with the Memory Lifetime.

namespace winrt
{
 using namespace winrt::Windows::Foundation;
}

struct MemoryLifetime
{
 using MemoryCleanupHandler = winrt::DeferralCompletedHandler;

 MemoryLifetime(
 winrt::array_view<uint8_t> view,
 MemoryCleanupHandler const& cleanup)
 : m_view(view)
 {
 m_cleanup.add(cleanup);
 }

 ~MemoryLifetime()
 {
 m_cleanup();
 }

 // Not copyable, not assignable.
 MemoryLifetime& operator=(MemoryLifetime const&) = delete;
 MemoryLifetime(MemoryLifetime const&) = delete;

 winrt::array_view<uint8_t> m_view;
 winrt::event<MemoryCleanupHandler> m_cleanup;
};

https://devblogs.microsoft.com/oldnewthing/20240126-00/?p=109322

1/31/24, 4:58 PM How can I expose a pre-existing block of memory as a Windows Runtime object without copying the data? - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240126-00/ 2/7

The Memory Lifetime object represents a block of memory that is cleaned up at destruction by
the provided Memory Cleanup Handler delegate. All not-yet-closed IMemoryBuffer and IMemory -
Buffer Reference objects retain a strong reference to the Memory Lifetime.

I pull a couple of sneaky tricks in dealing with the delegate. First, I reuse the Deferral -
Completed Handler, since it is a delegate for void(), which is what we want too.

Second, I store the delegate in a winrt::event rather than as a delegate directly. I’m taking
advantage of a few features of winrt::event:

It detects delegates which are not agile and puts them in an agile wrapper so that we
can raise the event from any thread.
It catches exceptions that are thrown from the delegate, which is good because any
uncaught exception in a destructor terminates the process because destructors default
to noexcept.

The Memory Lifetime is kept in a shared_ptr. This next class helps us manage that pointer.

1/31/24, 4:58 PM How can I expose a pre-existing block of memory as a Windows Runtime object without copying the data? - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240126-00/ 3/7

struct MemoryLifetimeTracker
{
 MemoryLifetimeTracker(std::shared_ptr<MemoryLifetime> lifetime)
 : m_lifetime(std::move(lifetime)) {}

 std::shared_ptr<MemoryLifetime> Lifetime()
 {
 auto lock = winrt::slim_shared_lock_guard(m_srwlock);
 return m_lifetime;
 }

 winrt::array_view<uint8_t> GetView()
 {
 auto lock = winrt::slim_shared_lock_guard(m_srwlock);
 return m_lifetime ? m_lifetime->m_view
 : winrt::array_view<uint8_t>{};
 }

 // For IMemoryBufferByteAccess
 HRESULT GetBuffer(uint8_t** buffer, uint32_t* size) noexcept
 {
 auto view = GetView();
 *buffer = view.data();
 *size = view.size();
 return S_OK;
 }

 std::shared_ptr<MemoryLifetime> Reset()
 {
 auto lock = winrt::slim_lock_guard(m_srwlock);
 return std::exchange(m_lifetime, {});
 }

private:
 winrt::slim_mutex m_srwlock;
 std::shared_ptr<MemoryLifetime> m_lifetime;
};

The code in Reset() to clean up the m_lifetime is tricky because we must hold the lock in
order to access m_lifetime, but we don’t want Memory Lifetime‘s destructor to run from inside
the lock, because we don’t know what sorts of shenanigans the cleanup delegate will get up
to, and we don’t want to hold the lock across what could be a very long and dangerous
function. So we exchange the shared pointer while under the lock, and then return it. The
caller will then allow the shared pointer to destruct, outside the lock. (It’s okay for the Memory -
Lifetime Tracker to destroy the shared pointer without a lock. There are no conflicting
threads at that point.)

The next piece is the IMemory Buffer Reference. This is the most complicated part.

1/31/24, 4:58 PM How can I expose a pre-existing block of memory as a Windows Runtime object without copying the data? - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240126-00/ 4/7

struct CustomMemoryBufferReference :
 winrt::implements<
 CustomMemoryBufferReference,
 winrt::IMemoryBufferReference,
 winrt::IClosable,
 ::Windows::Foundation::IMemoryBufferByteAccess>
{
 using ClosedEventHandler = winrt::TypedEventHandler<
 winrt::IMemoryBufferReference, winrt::IInspectable>;

 static_assert(!outer(), "Must not be composable.");

 CustomMemoryBufferReference(
 std::shared_ptr<MemoryLifetime> const& lifetime)
 : m_tracker(lifetime)
 {
 NonDelegatingAddRef();
 }

 uint32_t Capacity()
 {
 return m_tracker.GetView().size();
 }

 STDMETHOD(GetBuffer)(uint8_t** buffer, uint32_t* size)
 noexcept override
 {
 return m_tracker.GetBuffer(buffer, size);
 }

 decltype(std::declval<implements>().Release())
 __stdcall Release() noexcept override
 {
 auto count = NonDelegatingRelease();
 if (count == 1)
 {
 count = Close(count);
 }
 return count;
 }

 winrt::event_token Closed(ClosedEventHandler const& handler)
 {
 return m_closed.add(handler);
 }

 void Closed(winrt::event_token token)
 {
 m_closed.remove(token);
 }

1/31/24, 4:58 PM How can I expose a pre-existing block of memory as a Windows Runtime object without copying the data? - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240126-00/ 5/7

 uint32_t Close(uint32_t count = 0)
 {
 if (!m_notified.exchange(true, std::memory_order_relaxed))
 {
 m_closed(*this, nullptr);
 m_tracker.Reset();
 count = NonDelegatingRelease();
 }
 return count;
 }

 MemoryLifetimeTracker m_tracker;
 std::atomic<bool> m_notified;
 winrt::event<ClosedEventHandler> m_closed;
};

The Custom Memory Buffer Reference is constructed with a shared pointer to a Memory Lifetime
that gives us access to the underlying memory.

We follow the general pattern of giving away a COM reference just before the object
destructs, but since the cleanup can also be explicitly triggered via Close(), we put the
“notified” flag in the Close() method.

If we call Close() as part of the final application-visible Release(), we want to return the
revised reference count so that it’s easier to debug the application by observing the return
value of Release() to figure out whether that was the final Release(). We pass the original
reference count as a parameter, and if the Close() method raises the Closed event, then it
returns the revised reference count.

if the Close() method is called via the projection, it is done with no parameters, so the count
parameter defaults to zero. Furthermore, the projected Close() is void, so our uint32_t
return value is ignored. (We are taking advantage of C++/WinRT’s use of CRTP.)

The last piece is the Custom Memory Buffer.

https://devblogs.microsoft.com/oldnewthing/20211208-00/?p=106012

1/31/24, 4:58 PM How can I expose a pre-existing block of memory as a Windows Runtime object without copying the data? - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240126-00/ 6/7

struct CustomMemoryBuffer :
 winrt::implements<
 CustomMemoryBuffer,
 winrt::IMemoryBuffer,
 winrt::cloaked<winrt::IMemoryBufferByteAccess>,
 winrt::IClosable>
{
 using MemoryCleanupHandler = winrt::DeferralCompletedHandler;

 CustomMemoryBuffer(
 winrt::array_view<uint8_t> view,
 MemoryCleanupHandler const& cleanup)
 : m_lifetime(std::make_shared<MemoryLifetime>(view, cleanup))
 {
 }

 // IMemoryBuffer
 winrt::IMemoryBufferReference CreateReference()
 {
 return winrt::make<CustomMemoryBufferReference>(
 m_tracker.Lifetime());
 }

 // IMemoryBufferByteAccess
 STDMETHOD(GetBuffer)(uint8_t** buffer, uint32_t* size)
 noexcept override
 {
 return m_tracker.GetBuffer(buffer, size);
 }

 // IClosable
 void Close() { m_tracker.Reset(); }

 MemoryLifetimeTracker m_tracker;
};

template<typename T>
winrt::IMemoryBuffer CreateCustomMemoryBuffer(
 winrt::array_view<T> view,
 winrt::DeferralCompletedHandler const& cleanup)
{
 auto byte_view = winrt::array_view(
 reinterpret_cast<uint8_t*>(view.data()),
 view.size() / sizeof(T));
 return winrt::make<CustomMemoryBuffer>(byte_view, cleanup);
}

inline winrt::IMemoryBuffer CreateCustomMemoryBuffer(
 void* buffer, uint32_t size,
 winrt::DeferralCompletedHandler const& cleanup)
{

1/31/24, 4:58 PM How can I expose a pre-existing block of memory as a Windows Runtime object without copying the data? - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240126-00/ 7/7

 return CreateCustomMemoryBuffer(
 { reinterpret_cast<uint8_t*>(buffer), size },
 cleanup);
}

The Custom Memory Buffer is our implementation of IMemoryBuffer. You create it from an
array_view and a handler that is called when all outstanding references have been released
or closed. We also provide a convenience overload for void* buffers.

Here’s an example usage of our implementation:

winrt::IMemoryBuffer
 CreateSharedMemoryBuffer(uint32_t size)
{
 winrt::handle mapping =
 winrt::check_pointer(
 CreateFileMappingW(INVALID_HANDLE_VALUE,
 nullptr, PAGE_READWRITE, 0, size, nullptr)) };
 auto view = winrt::check_pointer(
 MapViewOfFile(mapping.get(), FILE_MAP_WRITE, 0, 0, size));
 return CreateCustomMemoryBuffer(view, size, [view]
 {
 winrt::check_bool(UnmapViewOfFile(view));
 });
}

We create and map an unnamed file mapping and create a Custom Memory Buffer around that
block of memory, with a cleanup delegate that unmaps the view.

We’ll come back to this helper class later after we look at some other implementations.

