
1/31/24, 4:58 PM The useless IMemoryBufferReference.Closed event - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240123-00/ 1/1

January 23, 2024

The useless IMemoryBufferReference.Closed event
devblogs.microsoft.com/oldnewthing/20240123-00

Raymond Chen

The IMemoryBufferReference interface has a Closed event which is signaled when the
underlying object is closed or destructed. Closing the IMemoryBufferReference invalidates
any pointers that had been obtained from GetBuffer.

Unfortunately, this event is basically useless.

The idea was that a consumer of the buffer could be notified that the underlying data has
been made unavailable, but multithreading means that this notification doesn’t really help:
Suppose that you have one thread that is doing some computation with the buffer, and
another thread that notifies you that the buffer is invalid. The notification thread can’t stop the
computation thread in its tracks. At best, it would have to signal the computation thread to
wrap up and block the notification thread until the computation thread reports that it has
stopped accessing the buffer. But the notification might be delivered on a single-threaded
apartment, in which case blocking is ill-advised.

What’s worse, some implementations of IMemoryBufferReference raise the event after the
buffer becomes invalid, so this event doesn’t even give you a chance to stop your
computation. It’s just telling you, “Oh, hey, so, like, you probably just corrupted memory a few
millseconds ago.”

Fortunately, you don’t really need the notification because you’re generally just notifying
yourself. Each IMemoryBufferReference is a separate reference to the buffer, and if you have
two components that want to access the buffer, you can just give each one a different
IMemoryBufferReference. That way, one component closing the IMemoryBufferReference has
no effect on the other. The only time your IMemoryBufferReference should be closed is when
you close it.

And hopefully you can arrange so that you never surprise yourself.

Next time, we’ll look at how the Closed event is not merely useless but also dangerous.

https://devblogs.microsoft.com/oldnewthing/20240123-00/?p=109307

