
1/31/24, 4:58 PM Implementing two-phase initialization with ATL - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240118-00/ 1/3

January 18, 2024

Implementing two-phase initialization with ATL
devblogs.microsoft.com/oldnewthing/20240118-00

Raymond Chen

In an attempt to solve problems with exceptions thrown out of constructors that hand out
COM references in your class implement with ATL, you might notice this nice extension point
called Final Construct() and use it for the second phase of two-phase construction.

// ATL - this code is wrong
class MyPage : public CComObjectRootEx<CComMultiThreadModel>,
 public CComCoClass<MyPage>,
 public IPage
{
public:
 DECLARE_PROTECT_FINAL_CONSTRUCT()

 HRESULT FinalConstruct() try
 {
 Application::LoadComponent(this, blah, blah);
 something_that_might_throw();
 return S_OK;
 }
 CATCH_RETURN();

 ⟦ ... ⟧
};

You thought you were clever and remembered that ATL runs the constructor with a reference
count of zero, so you deferred the operations that use COM references to the Final -
Construct(), and you used DECLARE_PROTECT_FINAL_CONSTRUCT() to ensure that Final -
Construct() runs with a nonzero reference count.

However, if you look at how CComCoClass::CreateInstance uses Final Construct(), you’ll see
that it doesn’t really work for two-phase construction:

https://devblogs.microsoft.com/oldnewthing/20240118-00/?p=109286
https://devblogs.microsoft.com/oldnewthing/20240117-00/?p=109276
https://devblogs.microsoft.com/oldnewthing/20240117-00/?p=109276
https://devblogs.microsoft.com/oldnewthing/20050929-10/?p=34003
https://devblogs.microsoft.com/oldnewthing/20050929-10/?p=34003

1/31/24, 4:58 PM Implementing two-phase initialization with ATL - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240118-00/ 2/3

template<class Base>
/* static */
HRESULT WINAPI CComObject<Base>::CreateInstance(
 CComObject<Base>** pp) throw()
{
 ATLASSERT(*pp == NULL);
 if (pp == NULL)
 return E_POINTER;
 *pp = NULL;

 HRESULT hRes = E_OUTOFMEMORY;
 CComObject<Base>* p = NULL;
 ATLTRY(p = _ATL_NEW CComObject<Base>())
 if (p != NULL)
 {
 p->SetVoid(NULL);
 p->InternalFinalConstructAddRef();
 hRes = p->FinalConstruct();
 p->InternalFinalConstructRelease();
 if (hRes != S_OK) {
 delete p;
 p = NULL;
 }
 }
 *pp = p;
 return hRes;
}

Observe that if FinalConstruct() fails, the object is outright deleted; any AddRef that
occurred during Final Construct() won’t prevent the object’s destruction.

You will have to implement the two-phase construction manually.

1/31/24, 4:58 PM Implementing two-phase initialization with ATL - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240118-00/ 3/3

class MyPage : public CComObjectRootEx<CComMultiThreadModel>,
 public CComCoClass<MyPage>,
 public IPage
{
public:
 HRESULT InitializeComponent() noexcept try
 {
 Application::LoadComponent(this, blah, blah);
 something_that_might_throw();
 return S_OK;
 }
 CATCH_RETURN();

 ⟦ ... ⟧
};

HRESULT CreateMyPage(CComObject<MyPage>** result)
{
 *result = NULL;

 CComObject<MyPage>* page;

 HRESULT hr = CComObject<MyPage>::CreateInstance(&page);
 if (FAILED(hr)) return hr;

 CComPtr<CComObject<MyPage>> pageRef(page);

 hr = page->InitializeComponent());
 if (FAILED(hr)) return hr;

 *result = pageRef.Detach();
 return S_OK;
}

The important things to note are

We bump the reference count from 0 to 1 (by putting it in a CComPtr) before calling
Initialize Component(), so that the COM references we hand out have a nonzero
reference count.
We use a CComPtr so that the reference will be released automatically if Initialize -
Component() throws an exception or returns a COM failure.
The CComPtr destructor does a Release() rather than a delete, so any extra references
created by Initialize Component() are honored.

