
1/31/24, 4:59 PM In C++/WinRT, how can I await multiple coroutines and capture the results?, part 2 - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240111-00/ 1/2

January 11, 2024

In C++/WinRT, how can I await multiple coroutines and
capture the results?, part 2

devblogs.microsoft.com/oldnewthing/20240111-00

Raymond Chen

Instead of replacing the awaiter so it doesn’t retrieve the results, we can go ahead and
collect the results, and then return them. The Windows Runtime doesn’t have a convenient
way to return a strongly-typed heterogeneous collection. Structures must be declared in
metadata, and returning a vector of IInspectables is not strongly-typed.

Fortunately, we can use our friend simple_task, which has since been added to the Windows
Implementation Library as wil::task.

template<typename... Results>
wil::task<std::tuple<Results>>
when_all_with_results(
 winrt::Windows::Foundation::IAsyncOperation<Results>... asyncs)
{
 co_return std::make_tuple(co_await asyncs...);
}

auto [result1, result2] =
 co_await when_all_with_results(Do1Async(), Do2Async());

We wish we could have written

template<typename... Asyncs>
wil::task<auto>
when_all_with_results(Asyncs... asyncs)
{
 co_return std::make_tuple(co_await asyncs...);
}

but there is currently no facility in the C++ language for this sort of weirdo template
placeholder usage.

The above formulation does limit you to IAsyncOperation<T>, so you cannot use other
awaitables with when_all_with_results, like IAsync Operation With Progress<T, P>. Adding
IAsync Operation With Progress<T, P> support isn’t so bad, because the result type is available

https://devblogs.microsoft.com/oldnewthing/20240111-00/?p=109259
https://devblogs.microsoft.com/oldnewthing/20240110-00/?p=109256
https://devblogs.microsoft.com/oldnewthing/20210504-01/?p=105178
https://github.com/microsoft/wil
https://github.com/microsoft/wil

1/31/24, 4:59 PM In C++/WinRT, how can I await multiple coroutines and capture the results?, part 2 - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240111-00/ 2/2

from both IAsync Operation<T> and IAsync Operation With Progress<T, P> by checking the
return type of Get Result().

template<typename... Asyncs>
wil::task<std::tuple<
 decltype(std::declval<Asyncs>().GetResults())...>>
when_all_with_results(Asyncs... asyncs)
{
 co_return std::make_tuple(co_await asyncs...);
}

Or, taking advantage of trailing return types so we don’t need to go through the hassle of
declval:

template<typename... Asyncs>
auto
when_all_with_results(Asyncs... asyncs) ->
 wil::task<std::tuple<
 decltype(asyncs.GetResults())...>>
{
 co_return std::make_tuple(co_await asyncs...);
}

Extending support to other types of awaitables, such as wil::task, means having to fire up a
lot of infrastructure to figure out what the co_await return type is.

template<typename T>
using await_result = decltype(std::declval<
 awaiter_finder::type<T>>().await_resume());

template<typename... Asyncs>
wil::task<std::tuple<await_result<Asyncs>...>>
when_all_with_results(Asyncs... async)
{
 co_return std::make_tuple(co_await async...);
}

Great, you solved one problem but introduced at least two new ones.

First problem is that one of these awaitables might produce a C++ reference. This wasn’t a
problem with IAsyncOperation, since that never produces a C++ reference, but arbitrary
awaitables might do that. Another problem is that one of the async values might be an
awaitable that completes with void. You can’t put a void inside a tuple.

We’ll look more closely at these problems next time.

https://devblogs.microsoft.com/oldnewthing/20230707-00/?p=108402

