
1/2

December 29, 2023

How to allocate address space with a custom alignment
or in a custom address region

devblogs.microsoft.com/oldnewthing/20231229-00

Raymond Chen

Windows 10 version 1803 added the ability to request specific alignment and address region
requirements when creating address space mappings either for virtual memory (Virtual ‐
Alloc2) or file mappings (Map View Of File3). These new functions let you pass a MEM_
ADDRESS_REQUIREMENTS structure which can specify additional constraints:

Lowest Starting Address: The lowest address in the region.
Highest Ending Address: The highest address in the region.
Alignment: The desired alignment.

If any field is zero, then the system uses whatever value it normally would have. For
example, if you say that the alignment is zero, then the memory will be aligned on the
allocation granularity (for normal-sized pages) or the large page granularity (for large pages).

Here are some sample usages:

Scenario
Lowest Starting -
Address

Highest Ending -
Address Alignment

Align to
multiple of N

0 0 N

Below 4GB 0 0x00000000`FFFFFFFF 0

Above 4GB 0x00000001`00000000 0 0

At 1MB
boundary

 between 2GB
and 4GB

0x00000000`80000000 0x00000000`FFFFFFFF 0x00000000`00100000

Note that the Highest Ending Address is endpoint-inclusive. In other words, it is the highest
address in the region, not the highest address plus one.

https://devblogs.microsoft.com/oldnewthing/20231229-00/?p=109204

2/2

Here’s how you pass the MEM_ADDRESS_REQUIREMENTS:

MEM_ADDRESS_REQUIREMENTS requirements = {0};

requirements.LowestStartingAddress = ⟦ value ⟧;
requirements.HighestStartingAddress = ⟦ value ⟧;
requirements.Alignment = ⟦ value ⟧;

MEM_EXTENDED_PARAMETER param = {0};
param.Type = MemExtendedParameterAddressRequirements;
param.Pointer = &requirements;

auto result = VirtualAlloc2(nullptr, nullptr,
 size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE,
 ¶m, 1);

The Virtual Alloc2 function takes a pointer to an array of MEM_EXTENDED_PARAMETER
structures, but since we have only one, we just pass the address of a single object and tell
the system that we have an array of only one element.

Note that you cannot combine non-default MEM_ADDRESS_REQUIREMENTS with an explicit Base ‐
Address. If you pass an explicit base address, then you are saying, “I want the memory to be
exactly here; I don’t want the system to choose for me.” Under those conditions, it’s
meaningless to tell the system “And here is how I’d like you to choose the address for me.”

