
1/6

November 24, 2023

On harmful overuse of std::move
devblogs.microsoft.com/oldnewthing/20231124-00

Raymond Chen

The C++ std::move function casts its parameter to an rvalue reference, which enables its
contents to be consumed by another operation. But in your excitement about this new
expressive capability, take care not to overuse it.

std::string get_name(int id)
{
 std::string name = std::to_string(id);
 /* assume other calculations happen here */
 return std::move(name);
}

You think you are giving the compiler some help by saying “Hey, like, I’m not using my local
variable name after this point, so you can just move the string into the return value.”

Unfortunately, your help is actually hurting. Adding a std::move causes the return
statement to fail to satisfy the conditions for copy elision (commonly known as Named Return
Value Optimization, or NVRO): The thing being returned must be the name of a local variable
with the same type as the function return value.

The added std::move prevents NVRO, and the return value is move-constructed from the
name variable.

std::string get_name(int id)
{
 std::string name = std::to_string(id);
 /* assume other calculations happen here */
 return name;
}

This time, we return name directly, and the compiler can now elide the copy and put the name
variable directly in the return value slot with no copy. (Compilers are permitted but not
required to perform this optimization, but in practice, all compilers will do it if all code paths
return the same local variable.)

The other half of the overzealous std::move is on the receiving end.

https://devblogs.microsoft.com/oldnewthing/20231124-00/?p=109059
http://eel.is/c++draft/class.copy.elision

2/6

extern void report_name(std::string name);

void sample1()
{
 std::string name = std::move(get_name());
}

void sample2()
{
 report_name(std::move(get_name()));
}

In these two sample functions, we take the return value from get_name and explicitly
std::move it into a new local variable or into a function parameter. This is another case of
trying to be helpful and ending up hurting.

Constructing a value (either a local variable or a function parameter) from a matching value
of the same type will be elided: The matching value is stored directly into the local variable or
parameter without a copy. But adding a std::move prevents this optimization from occurring,
and the value will instead be move-constructed.

extern void report_name(std::string name);

void sample1()
{
 std::string name = get_name();
}

void sample2()
{
 report_name(get_name());
}

What’s particularly exciting is when you combine both mistakes. In that case, you took what
would have been a sequence that had no copy or move operations at all and converted it
into a sequence that creates two extra temporaries, two extra move operations, and two
extra destructions.

3/6

#include <memory>

struct S
{
 S();
 S(S const&);
 S(S &&);
 ~S();
};

extern void consume(S s);

// Bad version
S __declspec(noinline) f1()
{
 S s;
 return std::move(s);
}

void g1()
{
 consume(std::move(f1()));
}

Here’s the compiler output for msvc:

4/6

; on entry, rcx says where to put the return value
f1:
 mov qword ptr [rsp+8], rcx
 push rbx
 sub rsp, 48
 mov rbx, rcx

 ; construct local variable s on stack
 lea rcx, qword ptr [rsp+64]
 call S::S()

 ; copy local variable to return value
 lea rdx, qword ptr [rsp+64]
 mov rcx, rbx
 call S::S(S &&)

 ; destruct the local variable s
 lea rcx, qword ptr [rsp+64]
 call S::~S()

 ; return the result
 mov rax, rbx
 add rsp, 48
 pop rbx
 ret

g1:
 sub rsp, 40

 ; call f1 and store into temporary variable
 lea rcx, qword ptr [rsp+56]
 call f1()

 ; copy temporary to outbound parameter
 mov rdx, rax
 lea rcx, qword ptr [rsp+48]
 call S::S(S &&)

 ; call consume with the outbound parameter
 mov rcx, rax
 call consume(S)

 ; clean up the temporary
 lea rcx, qword ptr [rsp+56]
 call S::~S()

 ; return
 add rsp, 40
 ret

Notice that calling g1 resulted in the creation of a total of two extra copies of S, one in f1 and
another to hold the return value of f1.

5/6

By comparison, if we use copy elision:

// Good version
S __declspec(noinline) f2()
{
 S s;
 return s;
}

void g2()
{
 consume(f2());
}

then the msvc code generation is

; on entry, rcx says where to put the return value
f2:
 push rbx
 sub rsp, 48
 mov rbx, rcx

 ; construct directly into return value (still in rcx)
 call S::S()

 ; and return it
 mov rax, rbx
 add rsp, 48
 pop rbx
 ret

g2:
 sub rsp, 40

 ; put return value of f1 directly into outbound parameter
 lea rcx, qword ptr [rsp+48]
 call f2()

 ; call consume with the outbound parameter
 mov rcx, eax
 call consume(S)

 ; return
 add rsp, 40
 ret

You get similar results with gcc, clang, and icc icx.

In gcc, clang, and icx, you can enable the pessimizing-move warning to tell you when you
make these mistakes.

6/6

