
1/2

October 26, 2023

How to support a COM interface conditionally in
C++/WinRT

devblogs.microsoft.com/oldnewthing/20231026-00

Raymond Chen

We saw some time ago that the C++/WinRT library provides an extension point for adding
additional interfaces that aren’t declared in your implements template. But what about the
reverse case? What if you want to remove an interface that was listed in your implements
template?

You might want to do this if you want to support an interface only conditionally. Just be
careful to follow the rules: Every attempt to query for a specific interface from an object must
return a consistent result (either always succeed for that interface or always fail for that
interface).

The extension point for removing an interface in C++/WinRT is the find_interface virtual
method: We can override it to filter out interfaces we don’t like.

struct Widget : winrt::implements<
 Widget, winrt::IWidget, winrt::IStringable>
{
 void* find_interface(winrt::guid const& id)
 const noexcept override
 {
 // If "Stringable" is not enabled,
 // then don't support IStringable.
 if (id == winrt::guid_of<winrt::IStringable>() &&
 !is_stringable_enabled())
 {
 return nullptr;
 }
 return implements::find_interface(id);
 }

 // Implement IWidget methods
 void WidgetMethod();

 // Implement IStringable methods
 winrt::hstring ToString();
};

https://devblogs.microsoft.com/oldnewthing/20231026-00/?p=108930
https://devblogs.microsoft.com/oldnewthing/20210913-00/?p=105680

2/2

When a query comes in for IStringable, we check whether IStringable support is
enabled. If not, then we return nullptr immediately, which causes the Query Interface to
fail with E_NO INTERFACE. Otherwise, we forward the call to the base class to continue
normally.

As I noted before, according to COM rules, once you decide whether or not IStringable is
supported, you have to stick with that decision for the lifetime of the object. The imaginary
is_stringable_enabled() function should be based on some immutable state, or at least
state which becomes immutable once the is_stringable_enabled() function is called.

Now, there is also a method on IInspectable called Get Iids which returns a list of the
Windows Runtime interfaces implemented by an object. Shouldn’t we also remove
IStringable from that list?

I guess you could do that, but it wouldn’t help much. The Get Iids method is used for runtime
reflection. However, a much richer way to get the Windows Runtime interfaces implemented
by an object is to ask the object for its runtime class name (Get Runtime Class Name) and then
look up that name in the Windows metadata (winmd) file. The winmd file will tell you all the
interfaces which the object implements, and it will be in the form of strings, not IIDs. You can
then look up those interfaces in Windows metadata files to see what their methods are. On
the other hand, Get Iids just gives you a bunch of IIDs, and there’s no practical way to get an
interface’s name and methods from its IID.

Even though we could remove the IID from those reported by Get Iids, we can’t remove it
from the interfaces reported by the Windows metadata files, since those are just static data
files. We may as well just allow the interface to be reported and fail the query later. A
debugger might show the methods on that interface, and then when the developer tries to
call them, the call will fail. Not the best experience, but not the end of the world.

Bonus chatter: A template for this pattern exists in the Windows Implementation Library
under the name wil::winrt_conditionally_implements.

https://github.com/microsoft/wil/pull/324/files
https://github.com/microsoft/wil/
https://github.com/microsoft/wil/wiki/WIL-and-C---WinRT-together#winrt_conditionally_implements

