
1/6

September 29, 2023

Template meta-programming: Avoiding saying a type
before it is complete

devblogs.microsoft.com/oldnewthing/20230929-00

Raymond Chen

As we noted last time, C++/WinRT’s get_strong() will produce a broken strong reference if
destruction has already begun. The C++ standard library’s enable_shared_from_this
solves this problem by saving a weak reference in the object itself. But if you tried the
analogous trick in versions of C++/WinRT prior to 2.0.211028.7, you got a weird compiler
error.

https://devblogs.microsoft.com/oldnewthing/20230929-00/?p=108839
https://devblogs.microsoft.com/oldnewthing/20230928-53/?p=108833
https://github.com/microsoft/cppwinrt/releases/tag/2.0.211028.7

2/6

struct Me : winrt::implements<Me, winrt::IInspectable>
{
 winrt::weak_ref<Me> m_weakSelf;
};

// msvc
type_traits(1173,28): error C2139: 'Me': an undefined class is not allowed as an
argument to compiler intrinsic type trait '__is_base_of'
test.h(16,8): message : see declaration of 'Me'
base.h(1963,45): message : see reference to variable template 'const bool
is_base_of_v<winrt::Windows::Foundation::IUnknown, Me>' being compiled
base.h(4119,24): message : see reference to alias template instantiation 'winrt::
impl::com_ref<T>' being compiled
with
[
 T=Me
]
Test.cpp(19,25): message : see reference to class template instantiation 'winrt::
weak_ref<D>' being compiled
with
[
 D=Me
]

// gcc
type_traits: In instantiation of 'struct std::is_base_of<winrt::Windows::Foundation::
IUnknown, Me>':
type_traits:3282:69: required from 'constexpr const bool std::is_base_of_v<winrt::
Windows::Foundation::IUnknown, Me>'
required from 'struct winrt::weak_ref<Me>'
required from here
type_traits:1447:38: error: invalid use of incomplete type 'struct Me'
| : public integral_constant<bool, __is_base_of(_Base, _Derived)>
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~
note: forward declaration of 'struct Me'
| struct Me : winrt::implements<Me, winrt::IInspectable>
| ^^
type_traits: In instantiation of 'constexpr const bool std::is_base_of_v<winrt::
Windows::Foundation::IUnknown, Me>':
required from 'struct winrt::weak_ref<Me>'
required from here
type_traits:3282:69: error: 'value' is not a member of 'std::is_base_of<winrt::
Windows::Foundation::IUnknown, Me>'
| inline constexpr bool is_base_of_v = is_base_of<_Base, _Derived>::value;
| ^~~~~

// clang
type_traits:3345:68: error: incomplete type 'Me' used in type trait expression
 inline constexpr bool is_base_of_v = __is_base_of(_Base, _Derived);
 ^
note: in instantiation of variable template specialization 'std::is_base_of_v<winrt::
Windows::Foundation::IUnknown, Me>' requested here

3/6

 std::is_base_of_v<winrt::Windows::Foundation::IUnknown,T>, int, int> v);
 ^
note: in instantiation of template class 'winrt::weak_ref<Me>' requested here
 winrt::weak_ref<Me> m_weakSelf;
 ^
note: definition of 'Me' is not complete until the closing '}'
struct Me : winrt::implements<Me, winrt::IInspectable>
 ^

In this case, clang is the one that pinpoints the problem: “Definition of Me is not complete until
the closing brace.”

The problem is that weak_ref<T> requires that T be a complete type because it has a
constructor that relies on the completeness of T:

template <typename T>
struct weak_ref
{
 weak_ref(std::nullptr_t = nullptr) noexcept {}

 weak_ref(impl::com_ref<T> const& object)
 {
 ⟦ implementation elided ⟧
 }

 ⟦ other members ⟧
};

The impl::com_ref template type is an internal C++/WinRT helper. We can peek at its
definition:

template <typename T>
using com_ref = std::conditional_t<
 std::is_base_of_v<Windows::Foundation::IUnknown, T>,
 T,
 com_ptr<T>>;

In words, a com_ref<T> is just a T if T is itself a projected type. Otherwise, it’s a com_ptr<T>.

Now, when you write weak_ref<T>, this instantiates the template, and the compiler generates
declarations for all of the members. One of those members is the second constructor that
takes a impl::com_ref<T> as a parameter. And that’s where the error occurs, because in
order to know what impl::com_ref<T> means, the compiler has to see whether T has
winrt::Windows::Foundation::IUnknown as a base class, and that requires that T be a
complete type.

We can solve this problem by templating the second constructor.

4/6

template <typename T>
struct weak_ref
{
 weak_ref(std::nullptr_t = nullptr) noexcept {}

 template<typename U>
 weak_ref(U&& object)
 {
 ⟦ implementation elided ⟧
 }

 ⟦ other members ⟧
};

This defers the instantiation of the second constructor until somebody tries to call it, which
will (we hope) happen after T is a complete type.

But wait, we’re not done yet.

For one thing, the original constructor specified its parameter as impl::com_ref<T>, which
means that if the caller passed a braced list, that braced list is used to construct a impl::
com_ref<T>. But we don’t get that effect with the forwarding reference. Forwarding
references received braced lists as a initializer_list<X> for some type X. In order to tell
the compiler, “If you see a braced list, please treat it as the constructor parameters to a
impl::com_ref<T>,” we specify a default type:

template <typename T>
struct weak_ref
{
 weak_ref(std::nullptr_t = nullptr) noexcept {}

 template<typename U = impl::com_ref<T>>
 weak_ref(U&& object)
 {
 ⟦ implementation elided ⟧
 }

 ⟦ other members ⟧
};

Now, the original implementation assumed that object was a com_ref<T>, so if the inbound
parameter isn’t one, we need to convert it.

5/6

template <typename T>
struct weak_ref
{
 weak_ref(std::nullptr_t = nullptr) noexcept {}

 template<typename U = impl::com_ref<T>>
 weak_ref(U&& objectArg)
 {
 impl::com_ref<T> const& object = objectArg;

 ⟦ implementation elided ⟧
 }

 ⟦ other members ⟧
};

There’s a subtlety here, though. The conversion from objectArg to object is an explicit
conversion, but parameter conversions use only implicit conversions. We can use SFINAE to
limit ourselves to types that support implicit conversion to com_ref<T>.

template <typename T>
struct weak_ref
{
 weak_ref(std::nullptr_t = nullptr) noexcept {}

 template<typename U = impl::com_ref<T>,
 typename = std::enable_if_t<
 std::is_convertible_v<
 U&&,
 impl::com_ref<T> const&>>>
 weak_ref(U&& objectArg)
 {
 impl::com_ref<T> const& object = objectArg;

 ⟦ implementation elided ⟧
 }

 ⟦ other members ⟧
};

This revision also solves another problem: Without SFINAE, our templated weak_ref
constructor would also be used as the copy and move constructor, rather than using the
compiler-generated default versions. Fortunately, the SFINAE rejects weak_ref const& and
weak_ref&& (since neither is convertible to com_ref<T>), so adding the SFINAE also
magically restores the copy and move constructors.

Finally, to avoid code size explosion due to each specialization producing a different
conversion, we factor the original constructor into a helper that takes only a com_ref<>. That
way, the bulk of the code is shared among all the constructors.

6/6

template <typename T>
struct weak_ref
{
 weak_ref(std::nullptr_t = nullptr) noexcept {}

 template<typename U = impl::com_ref<T>,
 typename = std::enable_if_t<
 std::is_convertible_v<
 U&&,
 impl::com_ref<T> const&>>>
 weak_ref(U&& object)
 {
 from_com_ref(static_cast<impl::com_ref<T> const&>(object));
 }

 ⟦ other members ⟧

 template<typename U>
 void from_com_ref(U&& object)
 {
 ⟦ implementation elided ⟧
 }
};

Again, the from_com_ref method is templated so that it is not instantiated immediately, since
it is not allowed to say that its parameter is a com_ref<T>. Instead, we secretly accept a
com_ref<T> by using a parlor trick from some time ago: We accept a templated parameter
even though in practice, only one type ever gets passed.

What this all means is that starting in C++/WinRT version 2.0.211028.7, you can have a
class hold a weak reference to itself.

struct Me : winrt::implements<Me, winrt::IInspectable>
{
 winrt::weak_ref<Me> m_weakSelf = get_weak();
};

https://devblogs.microsoft.com/oldnewthing/20221202-00/?p=107532
https://github.com/microsoft/cppwinrt/releases/tag/2.0.211028.7

