
1/4

September 8, 2023

On transferring or copying ABI pointers between smart
pointers

devblogs.microsoft.com/oldnewthing/20230908-00

Raymond Chen

A customer traced a crash to a reference count underflow. But they were using smart
pointers. I thought smart pointers avoided reference count problems.

Smart pointers make it easier to avoid reference count problems, but you still have to use
them correctly.

There are some basic operations for ABI interop with smart pointers.

Take ownership: Given a raw pointer, accept the pointer and assume responsibility for
releasing it. This typically goes by the name “attach”.
Share ownership: Given a raw pointer, accept the pointer and share ownership by
incrementing the reference count. This doesn’t have a standard name, but I’ll call it
“copy” for the purpose of this discussion.
Non-destructive access: Given a smart pointer, produce the raw pointer without
relinquishing ownership. This is typically called “get”.
Abandon ownership: Given a smart pointer, produce the raw pointer and relinquish
ownership. This is typically called “detach”.

It is important that when you move raw pointers between smart pointers, that you match up
the two semantics: If you want to transfer ownership, then the donor should use detach
semantics and the recipient should use attach semantics. If you want to share ownership,
then the donor should use get semantics and the recipient should use copy semantics.

If you mess up, then you end up with reference count bugs: If the donor detaches but the
recipient copies, then you have a reference count leak. If the donor offers with “get” but the
recipient attaches, then you have an over-release.

Here are some tables showing various Windows smart pointer libraries and how they
express the two pairs of operations. Note that this table is just an overview; consult the
corresponding documentation for further information. For example, some of the methods
require that the smart pointer be non-null.

https://devblogs.microsoft.com/oldnewthing/20230908-00/?p=108740

2/4

First, the attach/detach (transfer) operations:

Library Detach (donor) Attach (recipient)

_com_ptr_t sp.Detach() sp.Attach(p)
 _com_ptr<T>(p, false)

ATL (CComPtr) sp.Detach() sp.Attach(p)

MFC (IPTR) sp.Detach()
 /* Note 1 */

sp.Attach(p)
 sp.Attach(p, FALSE)

 IPTR(T)(p, FALSE)

WRL sp.Detach() sp.Attach(p)

wil (com_ptr) sp.detach() sp.attach(p)

C++/WinRT (com_ptr) sp.detach()
 detach_abi(sp)

sp.attach(p)
 attach_abi(sp, p)

 com_ptr<T>(p, take_ownership_from_abi)

Note 1: IPTR’s Detach() method does not return the raw pointer.

And then the get/copy (share) operations:

Library Get (donor) Copy (recipient)

_com_ptr_t static_cast<T*>(sp)
 sp.GetInterfacePtr()

sp = p
 sp.Attach(p, true)

 _com_ptr<T>(p, true)

ATL (CComPtr) static_cast<T*>(sp)
 *sp

 sp.p

sp = p
 CComPtr<T>(p)

MFC (IPTR) static_cast<T*>(sp)
 sp.GetInterfacePtr()

sp = p
 sp.Attach(p, TRUE)

 IPTR(T)(p)
 IPTR(T)(p, TRUE)

WRL sp.Get() sp = p
 ComPtr<T>(p)

wil (com_ptr) sp.get() sp = p
 com_ptr<T>(p)

C++/WinRT (com_ptr) sp.get()
 get_abi(sp)

sp.copy_from(p)

3/4

Of course, if you are remaining within one row of the table, then you can usually avoid having
to operate through ABI pointers. For example, you can just use sp1 = sp2 to copy one smart
pointer to another smart pointer of the same type, or sp1 = std::move(sp2) to transfer
ownership. The purpose of the above tables is to help you move between rows: The donor
and recipient should both be attach/detach (transfer) semantics, or they should both be
get/copy (share) semantics.

But wait, there’s another option, which I will call the “recipient” pattern.

Library Create recipient
Transfer to

 recipient
Copy to

 recipient

_com_ptr_t &sp *r =
sp.Detach()

ATL (CComPtr) &sp
 &sp.p

*r =
sp.Detach()

sp.CopyTo(r)

MFC (IPTR) &sp

WRL &sp
 sp.GetAddressOf()

 sp.ReleaseAndGetAddressOf()

*r =
sp.Detach()

sp.CopyTo(r)

wil (com_ptr) &sp
 sp.addressof()

 sp.put()
 sp.put_void()

*r =
sp.detach()

sp.query_to(r)
 sp.copy_to(r)

C++/WinRT
(com_ptr)

sp.put()
 sp.put_void()

 put_abi(sp)

*r =
sp.detach()

 *r =
detach_abi(sp)

sp.copy_to(r)

The “recipient” pattern produces a T**, and it’s up to the donor to decide whether to transfer
or copy ownership to it. This pattern is used by most of COM: For example, Create Stream ‐
On HGlobal takes a recipient as its final parameter, and it puts a reference to the newly-
created stream in that recipient. You as the caller don’t know or care whether the function
copied or transferred a reference to the stream into your recipient pointer; all that you care
about is that when the function returns, your recipient pointer received a reference to the
thing.

Bonus chatter: C++ shared_ptr and unique_ptr have similar patterns and pitfalls. For
example, given the declarations unique_ptr<T> u1, u2;, you shouldn’t write things like
u1.reset(u2.get()) or std::shared_ptr<int>(u1.get()); since they result in double-
ownership and therefore will eventually result in double-destruction.

Bonus reading: We’re using a smart pointer, so we can’t possibly be the source of the leak.

https://devblogs.microsoft.com/oldnewthing/20091119-00/?p=15963

4/4

