
1/2

August 21, 2023

Inside STL: The different types of shared pointer control
blocks

devblogs.microsoft.com/oldnewthing/20230821-00

Raymond Chen

We saw earlier that C++ standard library shared pointers use a control block to manage the
object lifetime.

struct control_block
{
 virtual void Dispose() = 0;
 virtual void Delete() = 0;
 std::atomic<unsigned long> shareds;
 std::atomic<unsigned long> refs;
};

The control block has pure virtual methods, so it is up to derived classes to establish how to
dispose and delete the control block.

If you ask a shared_ptr to take responsibility for an already-constructed pointer, then you
get this:

template<typename T>
struct separate_control_block : control_block
{
 virtual void Destroy() noexcept override
 {
 delete ptr;
 }
 virtual void Delete() noexcept override
 {
 delete this;
 }
 T* ptr;
};

Added to the basic control block is a pointer to the managed object, which is deleted when
the last strong reference goes away.

If you use make_shared or allocate_shared, then the control block and the managed object
are placed in the same allocation. In that case, the control block looks like this:

https://devblogs.microsoft.com/oldnewthing/20230821-00/?p=108626
https://devblogs.microsoft.com/oldnewthing/20230814-00/?p=108597

2/2

template<typename T>
struct combined_control_block : control_block
{
 virtual void Destroy() noexcept override
 {
 ptr()->~T();
 }
 virtual void Delete() noexcept override
 {
 delete this;
 }
 T* ptr() { return reinterpret_cast<T*>(buffer); }

 // This buffer holds a "T"
 [[alignas(T)]] char buffer[sizeof(T)];
};

Added to the basic control block is a buffer suitable for holding a T object. When the
shared_ptr is created, a T is placement-constructed in that buffer, and when the last strong
reference goes away (Destroy()), it is destructed. Stephan T. Lavavej calls this the “We
know where you live” optimization because the control block doesn’t need to store an explicit
pointer to the buffer; it can derive it on the fly.

The reality is a little more complicated due to the need to store a deleter and possibly an
allocator, but those are typically zero-length objects, so they get stored in a compressed pair
with the other members.

In practice, when debugging, you don’t need to look past the reference counts in the
control_block. The thing you really care about in the shared_ptr is the pointed-to object. If
you ever look at the control block, it’s just to check whether there are any active strong
references.

Bonus chatter: For C++20 make_shared<T[]>, there’s another version of the control block
that also has a count member which specifies how many objects are in the storage.

https://www.reddit.com/r/cpp/comments/15sjmfa/inside_stl_the_shared_ptr_constructor_vs_make/jwepoxh/

