
1/8

August 10, 2023

Inside STL: The deque, implementation
devblogs.microsoft.com/oldnewthing/20230810-00

Raymond Chen

Now that we understand the design behind the common STL dequeue implementations, we
can peek into the implementation details.

All three of the major implementations of the standard library maintain an array of pointers to
blocks, which they confusingly call a “map” even though it is unrelated to std::map. (Even
more confusingly, gcc internally uses the term “node” instead of “block”.) Initially, all the
pointers in the map are nullptr, and the blocks are allocated only on demand.

We will say that a block is spare if it contains only spare elements.

 gcc clang msvc

Block
size

as many as fit in 512
bytes but at least 1
element

as many as fit in 4096
bytes but at least 16
elements

power of 2 that fits in 16
bytes but at least 1
element

Initial
map size

8 2 8

Map
growth

2× 2× 2×

Map
shrinkage

On request On request On request

Initial
first/last

Center Start Start

Members block** map;

size_t map_size;

iterator first;

iterator last;

block** map;

block** first_block;

block** last_block;

block** end_block;

size_t first;

size_t size;

block** map;

size_t map_size;

size_t first;

size_t size;

Map
layout

counted array simple_deque counted array

https://devblogs.microsoft.com/oldnewthing/20230810-00/?p=108587
https://devblogs.microsoft.com/oldnewthing/20230809-00/?p=108577

2/8

Valid
range

Pair of iterators Start and count Start and count

Iterator T* current;

T*

current_block_begin;

T*

current_block_end;

block**

current_block;

T* current;
block** current_block;

deque* parent;

size_t index;

begin() /
end()

Copy first and
last.

Break first and first
+ size into block index
and offset.

Break first and first
+ size into block index
and offset.

Spare
blocks

Aggressively pruned Keep one on each end Keep all

The Microsoft Visual C++ implementation has a tiny block size. I suspect this decision was
made a long time ago, and the Visual C++ folks are anxious to bump up the block size at the
next ABI break.

The gcc implementation doesn’t believe in spare blocks; it frees blocks as soon as they
become empty. The clang and Visual C++ implementations hold onto spare blocks in
anticipation that they will be needed again soon. The clang implementation retains one spare
block at each end, whereas the Visual C++ implementation retains all spare blocks. (I
suspect this is another old design decision that the Visual C++ team wants to change at the
next ABI break.)

If the clang implementation needs to allocate a new block at one end, it first checks to see if
there is a spare block at the other end. If so, then it moves that block from one end to the
other instead of allocating a new block.

The Microsoft Visual C++ implementation treats the map as a circular array of blocks. This
means that once the map is filled with blocks, no further allocations or element movement is
needed to satisfy any further deque operations, assuming the size of the dequeue never
exceeds the capacity.

None of the three implementations shrinks the map automatically. You have to call shrink_
to_fit() to get the map to shrink.

All three implementations keep track of the blocks differently. The gcc and Visual C++
implementations use a simple counted array. If the gcc implementation runs out of map
entries at one end, it slides the in-use blocks so that they are centered in the block map. The
Visual C++ implementation uses a circular buffer, so the only time it runs out of map entries

3/8

is when the entire map needs to be expanded. The clang implementation gets fancy and
uses the equivalent of our simple_deque for its map. This allows it to use the “slide” trick to
shift an empty slot from one end to the other.

All three implementations choose different formats for their iterators. The gcc and clang
implementations use a pointer to the current element and a pointer to the current block.
When incrementing or decrementing off the end of the block, they increment or decrement
the current_block to find the next block. The gcc implementation carries extra values
current_block_begin and current_block_end, which are technically redundant, since you
can derive

current_block_begin = *current_block;

current_block_end = current_block_begin + block_size;

Not only are these iterators bulky (presumably for performance?), but the gcc implementation
stores these bulky iterators in its deque, whereas clang and Visual C++ use an index and
length. Accessing an element by index involves dividing by the block size. This means that
clang’s begin() and end() incur a runtime division to calculate which block the element is in
and using the remainder to get the offset within the block. Visual C++ forces block sizes to be
powers of two, so it can use bitwise operations to break the index into a block and offset.

Here’s a visualization of what the three deque implementations look like if you alternately pop
from the front and push to the back:

First, here’s what gcc’s implementation does.

map[0] map[1] map[2] map[3]

 A B

 1 2 3

pop 1 from the front: Free block A

 B

 2 3

push 4 to the back: Allocate block C

 B C

 2 3 4

pop 2 from the front

4/8

 B C

 3 4

push 5 to the back

 B C

 3 4 5

pop 3 from the front: Free block B

 B C

 4 5

push 6 to the back: Allocate block D and slide

 C D

 4 5 6

The eager pruning of empty blocks in gcc means that we free a block, only to immediately
allocate a new one.

Here’s what clang does when you alternate pops and pushes:

map[0] map[1] map[2] map[3]

 A B

 1 2 3

pop 1 from the front: Block A becomes spare

 A B

 2 3

push 4 to the back: Steal block A

 B A

 2 3 4

pop 2 from the front

 B A

 3 4

5/8

push 5 to the back

 B A

 3 4 5

pop 3 from the front: Block B becomes spare

 B A

 4 5

push 6 to the back: Steal block B and slide

 A B

 4 5 6

Since clang keeps a one-block spare, the growth on the back can be satisfied by stealing the
spare block from the front. No new memory allocations are performed; just block sliding.

And here’s what Visual C++ does. Note that Visual C++ always pushes starting at the start of
the map, so getting to the initial state means that we have already popped three elements
from the front, leaving a spare block A.

map[0] map[1] map[2] map[3]

A B C

 1 2 3

pop 1 from the front: Block B becomes spare

A B C

 2 3

push 4 to the back: Allocate block D

A B C D

 2 3 4

pop 2 from the front

A B C D

 3 4

6/8

push 5 to the back

A B C D

 3 4 5

pop 3 from the front: Block C becomes spare

A B C D

 4 5

push 6 to the back: Wrap around to block A

A B C D

6 4 5

Once you reach the steady state where all the map entries have blocks, further deque
operations can be performed without any memory allocation or rearranging.

Here’s what the Microsoft Visual C++ deque looks like in the debugger with the visualizer:

d : { size = 0x2 }
 [0x0] = 1 [Type: __int64]
 [0x1] = 2 [Type: __int64]

The raw view reveals the soft underbelly of the implementation.

7/8

0:000> ?? d
class std::deque<__int64,std::allocator<__int64> >
 +0x000 _Mypair :
std::_Compressed_pair<std::allocator<__int64>,std::_Deque_val<std::_Deque_simple_types
>,1>
0:000> ?? d._Mypair
class
std::_Compressed_pair<std::allocator<__int64>,std::_Deque_val<std::_Deque_simple_types
>,1>
 +0x000 _Myval2 : std::_Deque_val<std::_Deque_simple_types<__int64> >
0:000> ?? d._Mypair._Myval2
class std::_Deque_val<std::_Deque_simple_types<__int64> >
 +0x000 _Myproxy : 0x000001c9`ee615540 std::_Container_proxy
 +0x008 _Map : 0x000001c9`ee6178b0 -> 0x000001c9`ee615000 -> 0n42
 +0x010 _Mapsize : 8
 +0x018 _Myoff : 3
 +0x020 _Mysize : 2
0:000> dps 0x000001c9`ee6178b0 L 8
000001c9`ee6178b0 000001c9`ee615000
000001c9`ee6178b8 000001c9`ee615160
000001c9`ee6178c0 000001c9`ee615380
000001c9`ee6178c8 000001c9`ee6153c0
000001c9`ee6178d0 000001c9`ee615720
000001c9`ee6178d8 000001c9`ee6155e0
000001c9`ee6178e0 000001c9`ee615240
000001c9`ee6178e8 000001c9`ee615020
0:000> dps 000001c9`ee615160 L2
000001c9`ee615160 00000000`0000002a
000001c9`ee615168 00000000`00000001
0:000> dps 000001c9`ee615380 L2
000001c9`ee615380 00000000`00000002
000001c9`ee615388 00000000`00000099

Since this is a dequeue of __int64 (8 bytes), there will be two values per 16-byte block.
From the raw dump, the _Map tells us where the block pointers are, and the _Mapsize tells us
how many. We dump the block pointers, and the _Myoff tells us that the first valid entry is at
offset 3, and the _Mysize tells us that there are two valid entries. Therefore, the first valid
entry is at offset 1 in block 1, and the second valid entry is at offset 0 in block 2.

We dump the block at index 1 and see that the value at offset 1 is 00000000`00000001. And
then we dump the block at index 2 and see that the value at offset 0 is 00000000`00000002.
We also see that the other (unused) elements in the block hold values that had previously
been pushed and then popped from the deque.

Bonus chatter: As I noted at the start of the series, the primary purpose of these articles is
to explain how to extract the contents of these collection classes when you encounter them
in a crash dump. I’m taking the designs as given and showing how to use them to find the
data.

8/8

