
1/3

July 31, 2023

Misinterpreting the misleadingly-named
STATUS_STACK_BUFFER_OVERRUN

devblogs.microsoft.com/oldnewthing/20230731-00

Raymond Chen

I noted some time ago that STATUS_STACK_BUFFER_OVERRUN doesn’t mean that there was a
stack buffer overrun, although that’s what it meant at first. Later, the status code was
broadened to mean “Program self-triggered abnormal termination”, but it was too late to
change the name.

A security vulnerability report came in that went like this:

https://devblogs.microsoft.com/oldnewthing/20230731-00/?p=108505
https://devblogs.microsoft.com/oldnewthing/20190108-00/?p=100655


2/3

I have found a stack overflow bug in Explorer. This stack overflow occurs in
ucrtbase.dll and Windows.UI.FileExplorer.dll. Since it occurs in Explorer, this can be
exploited to escalate privileges. To reproduce, download the attached ZIP file and right-
click it. I have also attached Explorer crash dumps for analysis.

EXCEPTION_RECORD: (.exr -1) 
ExceptionAddress: 00007ffcaa19dd7e (ucrtbase!abort+0x000000000000004e) 
ExceptionCode: c0000409 (Security check failure or stack buffer overrun) 
ExceptionFlags: 00000001 
NumberParameters: 1 
Parameter[0]: 0000000000000007 
Subcode: 0x7 FAST_FAIL_FATAL_APP_EXIT 

STACK_TEXT: 
ucrtbase!abort+0x4e 
ucrtbase!terminate+0x29 
ucrtbase!__crt_state_management::wrapped_invoke<void (__cdecl*)(void) 
noexcept,void>+0xf 
explorer!_scrt_unhandled_exception_filter+0x5a 
KERNELBASE!UnhandledExceptionFilter+0x1f1 
ntdll!LdrpLogFatalUserCallbackException+0xa2 
ntdll!KiUserCallbackDispatcherHandler+0x20 
ntdll!RtlpExecuteHandlerForException+0xf 
ntdll!RtlDispatchException+0x25a 
ntdll!RtlRaiseException+0x163 
KERNELBASE!RaiseException+0x6c 
msvcr90!_CxxThrowException+0x86 
contoso+0x104d 
contososhellext!OnInvokeCommand+0x548 
contososhellext!OnInvokeCommand+0x24d2a 
contososhellext!OnGetCommandString+0x4f 
contoso+0x2abd 
contoso+0x27f0 
shell32!CDefFolderMenu::GetCommandString+0x1f6 
shell32!CDefFolderMenu::_UnduplicateVerbs+0x31f 
shell32!CDefFolderMenu::QueryContextMenu+0x7d2 
shell32!CDefView::_DoContextMenuPopup+0x2f7 
shell32!CDefView::OnSelectionContextMenu+0x85 
explorerframe!UIItemsView::ShowContextMenu+0x378 
explorerframe!CItemsView::ShowContextMenu+0x17 
shell32!CDefView::_DoContextMenu+0x92 
shell32!CDefView::_OnContextMenu+0xec 
shell32!CDefView::WndProc+0x718 
shell32!CDefView::s_WndProc+0x5c 
user32!UserCallWinProcCheckWow+0x33c 
user32!CallWindowProcW+0x8e 

From the exception record, we see that this was a fast-fail: FAST_FAIL_FATAL_APP_EXIT.



3/3

From the stack trace we can see that this was due to an unhandled C++ exception thrown by
Contoso: Contoso called _CxxThrowException, and this ended up reaching the _scrt_
unhandled_exception_filter, which decided to terminate the process.

The problem is therefore with the Contoso shell extension: When you right-click this file, the
Contoso shell extension throws a C++ exception which it does not handle.

C++ exceptions cannot be thrown across the ABI boundary because there’s no requirement
in the ABI that the calling code even be written in C++ at all!¹ And certainly unhandled C++
exceptions are really bad ideas.

There is a bug here, but the bug is in the Contoso shell extension, not in Explorer. Such is
the punishment for allowing third party extensibility: Any bug in a third party extension
manifests itself as a bug in Explorer.

¹ For example, the Windows 95 shell was written in C.

 
 


