
1/4

July 24, 2023

Why does IAsyncAction or IAsyncOperation.GetResults()
produce a E_ILLEGAL_METHOD_CALL exception?

devblogs.microsoft.com/oldnewthing/20230724-00

Raymond Chen

For expository purposes, let’s look at the code we wrote some time ago which obtains
network usage information.

https://devblogs.microsoft.com/oldnewthing/20230724-00/?p=108477
https://devblogs.microsoft.com/oldnewthing/20210520-00/?p=105232


2/4

using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Threading.Tasks; 
using Windows.Networking.Connectivity; 

class Program 
{ 
   static async Task DoIt() 
   { 
       var now = DateTime.Now; 
       var states = new NetworkUsageStates 
       { Roaming = TriStates.DoNotCare, Shared = TriStates.DoNotCare }; 

       var profiles = NetworkInformation.GetConnectionProfiles(); 
       foreach (var profile in profiles) 
       { 
           var usages = await profile.GetNetworkUsageAsync( 
               now.AddDays(-1), now, DataUsageGranularity.PerDay, 
               states); 
           var usage = usages[0]; 
           if (usage.ConnectionDuration > TimeSpan.Zero) 
           { 
               Console.WriteLine(profile.ProfileName); 
               Console.WriteLine($"BytesReceived = {usage.BytesReceived}"); 
               Console.WriteLine($"BytesSent = {usage.BytesSent}"); 
               Console.WriteLine($"ConnectionDuration = 
{usage.ConnectionDuration}"); 
               Console.WriteLine($"------------------"); 
           } 
       } 

   } 
   static void Main() 
   { 
       DoIt().GetAwaiter().GetResult(); 
   } 
} 

But instead of wrapping the calculations inside a DoIt helper method, why not just grab the
results directly?



3/4

using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Threading.Tasks; 
using Windows.Networking.Connectivity; 

[STAThread] 
static void Main() 
{ 
   var now = DateTime.Now; 
   var states = new NetworkUsageStates 
   { Roaming = TriStates.DoNotCare, Shared = TriStates.DoNotCare }; 

   var profiles = NetworkInformation.GetConnectionProfiles(); 
   foreach (var profile in profiles) 
   { 
       var usages = /* await */ profile.GetNetworkUsageAsync( 
           now.AddDays(-1), now, DataUsageGranularity.PerDay, 
           states).GetResults(); 
       var usage = usages[0]; 
       if (usage.ConnectionDuration > TimeSpan.Zero) 
       { 
           Console.WriteLine(profile.ProfileName); 
           Console.WriteLine($"BytesReceived = {usage.BytesReceived}"); 
           Console.WriteLine($"BytesSent = {usage.BytesSent}"); 
           Console.WriteLine($"ConnectionDuration = {usage.ConnectionDuration}"); 
           Console.WriteLine($"------------------"); 
       } 
   } 
} 

Unfortunately, if you try this, you discover that the GetResults() call always fails with the
exception E_ILLEGAL_METHOD_CALL. What’s going on?

There is a difference between TaskAwaiter.GetResult() and IAsyncAction.GetResult()
(and its buddies like IAsyncOperation<T>.GetResult()).

The TaskAwaiter.GetResult() method waits for the task to complete before producing the
results. On the other hand, IAsyncAction.GetResult() does not wait. It gives you the result
if the asynchronous activity has completed, or it throws E_ILLEGAL_METHOD_CALL if the
activity has not yet run to completion. You are expected to wait for the Completed callback
before retrieving the result.¹

Now in this case, the situation is compounded by the fact that the program also marked the
Main method as [STAThread]. Single-threaded apartments must pump messages while
waiting; otherwise, you may run into deadlocks. So maybe it’s a good thing that this doesn’t
work. Otherwise, you’d be tempted to use it in an incorrect way.



4/4

¹ You can find the code that enforces this in the method Check Valid State For Results Call.
We looked at this method some time ago.

 
 

https://devblogs.microsoft.com/oldnewthing/20200709-00/?p=103970

