
1/2

June 14, 2023

How expensive is it to create a Windows performance
counter?

devblogs.microsoft.com/oldnewthing/20230614-00

Raymond Chen

A customer had a program that created a lot of performance counters, although the program
uses only a subset of them at any particular moment. How expensive is it to create a bunch
of performance counters that aren’t being used? Should they be careful to create them only
when needed and promptly destroy them when finished? Or is it okay to create all of them at
the start of the program and destroy all of them when the program ends?

Performance counters can be implemented in several different ways, and each way has a
different cost.

One of the simplest performance counters is just a global 32-bit or 64-bit integer that tracks
the number of times an event has occurred, or the total size of something. These types of
counters are relatively inexpensive to keep up to date, since the code just needs to
increment the value each time the thing occurs, or atomically add or subtract the size delta.

struct Widget
{
 Widget()
 {
 InterlockedIncrement(&TotalWidgetsCreated);
 InterlockedIncrement(&TotalActiveWidgets);
 }

 ~Widget()
 {
 InterlockedDecrement(&TotalActiveWidgets);
 }
};

HRESULT CreateWidget(Widget** result)
{
 *result = new(std::nothrow) Widget();
 return *result ? S_OK : E_OUTOFMEMORY;
}

https://devblogs.microsoft.com/oldnewthing/20230614-00/?p=108338

2/2

These simple updates are so inexpensive that you may as well just do them unconditionally.
The cost of of checking whether anybody is using them is comparable to the cost of updating
the counter, so you may as well not bother checking.

On the other hand, other performance counters are more complicated to maintain.

For example, “Bytes sent over the network on behalf of application X” may have to do quite a
bit of work to figure out which application to charge each network request to.

A counter that needs to be updated at each context switch would require a context switch
hook to be installed to update the counters. And you don’t want to slow down context
switches unnecessarily.

Some counters are backed by another data source, and starting a counter sets up a periodic
timer to pull the values from the external data source and update the performance counter.

In other words, the answer is “It depends.”

Some performance counters are cheap. Others can be expensive. I don’t think there’s any
requirement that each counter document how expensive they are, so if you want to play it
safe, you should create counters only when needed and destroy them as soon as you’re
finished.

