
1/6

May 23, 2023

On creating (and using) a transforming iterator
devblogs.microsoft.com/oldnewthing/20230523-00

Raymond Chen

The C++20 ranges library come with the ability to transform a view; that is, to provide a unary
function that is applied to each element of a view, producing a new view.

std::array<int, 2> a = { 99, 42 };

// This range reports values that are one larger than the values
// in an array. The array values are unchanged.
auto r = a |
 std::ranges::views::transform([](int v) { return v + 1; });

// This creates a vector from the range
std::vector v(r.begin(), r.end());

// The resulting vector is { 100, 43 }

But what if your code base isn’t ready to move to C++20 yet? For example, you might be a
library that wants to support C++17 or even C++14.

You can take the original iterator and wrap it inside another iterator that overrides the *
operator so that it applies a transformation to the value before returning it. Note that our
transforming iterator cannot support the -> operator since there is no value object we can
return a pointer to; our value is generated on demand. Fortunately, the standard permits us
to omit -> support, provided we define pointer as void.

https://devblogs.microsoft.com/oldnewthing/20230523-00/?p=108233

2/6

template<typename Inner>
struct Wrap
{
 Wrap(Inner const& inner) :
 m_inner(inner) {}
 Inner m_inner;
};

template<typename It, typename Transformer>
class transform_iterator : Wrap<Transformer>
{
 It m_it;
public:
 transform_iterator(It const& it,
 Transformer const& transformer) :
 m_it(it),
 Wrap<Transformer>(transformer) {}

 // copy constructors and assignment operators defaulted

 using difference_type = typename
 std::iterator_traits<It>::difference_type;
 using value_type = typename std::invoke_result<
 Transformer, It>::type;
 using pointer = void;
 using reference = void;
 using iterator_category = std::input_iterator_tag;

 bool operator==(transform_iterator const& other)
 { return m_it == other.m_it; }
 bool operator!=(transform_iterator const& other)
 { return m_it != other.m_it; }

 auto operator*() const { return (*this)(*m_it); }

 auto operator++() { ++m_it; return *this; }
 auto operator++(int)
 { auto prev = *this; ++m_it; return prev; }
};

// For C++14 (no CTAD)
template<typename It, typename Transformer>
auto make_transform_iterator(
 It const& it, Transformer const& transformer)
{
 return transform_iterator<It, Transformer>
 (it, transformer);
}

We can use this transforming iterator like this:

3/6

std::array<int, 2> a = { 99, 42 };

auto transformer = [](int v) { return v + 1; };

// This creates a vector from the array, applying
// a transformation to each value
std::vector v(
 transform_iterator(a.begin(), transformer),
 transform_iterator(a.end(), transformer));

// If C++14 (no CTAD)
std::vector<int> v(
 transform_iterator(a.begin(), transformer),
 transform_iterator(a.end(), transformer));

// The resulting vector is { 100, 43 }

The transformation can even change the type:

std::array<int, 2> a = { 99, 42 };

auto transformer = [](int v)
 { return std::make_pair(v + 1, v); };

// This creates a map from the array
std::map m(
 transform_iterator(a.begin(), transformer),
 transform_iterator(a.end(), transformer));

// If C++14 (no CTAD)
std::map<int, int> m(
 transform_iterator(a.begin(), transformer),
 transform_iterator(a.end(), transformer));

// The resulting map is
// m[100] = 99
// m[43] = 42

There are some non-obvious pieces of the above transform_iterator.

We want to accept not just lambdas as transformers, but any Callable. That means that we
use std::invoke to invoke the transformer on the wrapped iterator. This allows transformers
to be function pointers, member function pointers, pointers to member variables, lambdas, or
any other class with a public operator(). For example:

4/6

struct S
{
 int value;
 int ValuePlusOne() { return value + 1; };
};

int ValueMinusOne(S const& s)
{
 return s.value - 1;
}

void example()
{
 std::array<S, 2> a { 99, 42 };

 // v1 = { 99, 42 }; - pointer to data member
 std::vector<int> v1(
 transform_iterator(a.begin(), &S::value),
 transform_iterator(a.end(), &S::value));

 // v2 = { 100, 43 }; - pointer to member function
 std::vector<int> v2(
 transform_iterator(a.begin(), &S::ValuePlusOne),
 transform_iterator(a.end(), &S::ValuePlusOne));

 // v3 = { 98, 41 }; - pointer to free function
 std::vector<int> v3(
 transform_iterator(a.begin(), &ValueMinusOne),
 transform_iterator(a.end(), &ValueMinusOne));
}

The transform_iterator derives from a wrapped Transformer. This is a space optimization
that takes advantage of empty base optimization (EBO): If the Transformer is an empty
class, then the Wrapped<Transformer> will also be an empty class, and empty base classes
are permitted to occupy zero bytes.¹ (Normally, objects cannot be of size zero.) This means
that a transform_iterator that has an empty class as a transformer (such as a captureless
lambda) is the same size as the original iterator.

We wrap the Transformer inside a class because base classes must be classes, but the
Transformer might not be a class, as we noted above.

A transforming iterator is handy for populating a std::map because all three of the major
implementations of the C++ standard library optimize the two-iterator insert() overload for
the case where the items are inserted in increasing key order at the end of map.²

In the case where you have two versions of a function, one of which takes a range and
another of which takes items one at a time, you can avoid the need for a transforming iterator
by turning the problem around: Instead of producing a range of transformed iterators to pass

5/6

to function, you produce an output iterator that calls the single-parameter version of the
function.

std::vector<int> v;
std::transform(a.begin(), a.end(), std::back_inserter(v),
 transformer);

std::map<int, int> m;
std::transform(a.begin(), a.end(), std::inserter(m, m.end()),
 transformer);

This is simpler but has its downsides:

You lose CTAD, since the compiler cannot infer the template type parameters from the
constructor.
Repeated single-element function calls may be less efficient than a bulk operation.

For example, inserting a transformed range into a vector is linear in the number of elements
inserted plus the number of elements after the insertion point. In other words, inserting n new
elements in front of k existing elements is O(n + k) if you do it in a single call to insert:

// Bulk insert after the first element
// This takes O(a.size() + v.size() - 1) =
// O(a.size() + v.size())
v.insert(v.begin() + 1,
 transform_iterator(a.begin(), transformer),
 transform_iterator(a.end(), transformer));

If you insert one element at a time, then you pay the k each time, which results in a running
time of n O(1 + k) = O(n + nk), an extra cost of O(nk).

// One-at-a-time insert after the first element
// This takes O(a.size() + a.size() * (v.size() - 1)) =
// O(a.size() * v.size())
v.insert(v.begin() + 1,
 transform_iterator(a.begin(), transformer),
 transform_iterator(a.end(), transformer));

Bonus chatter: The Boost library comes with an implementation of transform_iterator, so
you can use that one instead of the custom one here. But at least you got to see a number of
techniques that are commonly seen in library code.

¹ There are other things that could prevent the empty base optimization, but they do not
apply here.

² In other words, it’s as if the ranged insertion method were written as

6/6

template&typename Iterator>
void insert(Iterator first, Iterator last)
{
 for (; first != last; ++first) {
 insert(end(), *first);
 }
}

Last time, we looked at other ways of doing efficient bulk insertions.

https://devblogs.microsoft.com/oldnewthing/20230522-00/?p=108226

