
1/4

March 16, 2023

Mind your C++/WinRT namespaces
devblogs.microsoft.com/oldnewthing/20230316-00

Raymond Chen

When you implement a Windows Runtime class in C++/WinRT, each class name appears in

three different namespace, so you need to mind your namespaces.

Projection winrt::Namespace::ClassName

Factory
winrt::Namespace::factory_implementation::
ClassName

Implementation winrt::Namespace::implementation::ClassName

If you write an unqualified ClassName , the compiler searches for the name in the current

namespace, then the parent namespace, then the grandparent namespace, and so on until it

reaches the global namespace.

Now, when you say ClassName , there’s a decent chance that you intend to refer to the name

in the projection namespace, particularly if you copy/pasta’d some code from a tutorial or

from another project. What you didn’t realize is that the code you copied was intended to be

compiled outside the implementation namespaces. But if you happen to be in one of the

implementation namespaces, you will pick up the name in that other namespace by mistake.

https://devblogs.microsoft.com/oldnewthing/20230316-00/?p=107944

2/4

namespace winrt::MyNamespace::implementation
{
 struct ClassName : ClassNameT<ClassName>
 {
 ClassName CreateChild()
 { return make<ClassName>(...); }

 Windows::Foundation::IAsyncOperation<ClassName>
 CreateChildAsync()
 {
 /* do stuff */
 co_return make<ClassName>(...);
 }
 };
}

namespace winrt::MyNamespace::factory_implementation
{
 struct ClassName : ClassNameT<ClassName, implementation::ClassName>
 {
 static ClassName Create()
 { return make<ClassName>(); }
 };
}

The above code wants the CreateChild() method to return a Windows Runtime

ClassName object, but since the name ClassName is being used inside the winrt::

Namespace::implementation namespace, it actually refers to the winrt::

Namespace::implementation::ClassName implementation type, not the projection

type.

Similarly, the Create() method on the factory class intends to return a Windows Runtime

ClassName object, but instead it returns a winrt::Namespace::factory_

implementation::ClassName object.

The result of this incorrect name lookup is usually a pair of really confusing error messages.

You get one error message when the compiler realizes that the return make<ClassName>

(...) is trying to return a projected type, but the declared return type is one of the

implementation types, so you are scolded that there is no conversion from the projection type

to the implementation type.

You get a second error message when the compiler instantiates the ClassNameT template,

which uses the Curiously Recurring Template Pattern (commonly known as CRTP). The

ClassNameT template expects the CreateChild() and Create() methods to return the

projected type, but their declared return type is an implementation type, and you get scolded

a second time because there is no conversion from the implementation type to the projection

type.

https://en.wikipedia.org/wiki/Curiously_recurring_template_pattern

3/4

The CreateChildAsync() method is even worse. In this case, we accidentally said that it

returns an IAsyncOperation<implementation::ClassName> . This mistake is also

rewarded with not just two but three confusing error messages, which could be reported in

any order.

As before, there is a problem from the CRTP code that the declared return type doesn’t match

what the CRTP code expects.

And analogously, you get an error at the co_return because the coroutine expects you to

co_return the implementation type (since that’s the accidental template type parameter to

IAsyncOperation), but you co_return ed the projection type. This error message is a

little confusing because it is typically reported as a problem with the promise’s

return_value method, since the argument to co_return gets passed to the promise’s

return_value method.

The third mysterious error message comes from IAsyncOperation because one of the

requirements is that the template type parameter (the thing produced by the

IAsyncOperation) must be a Windows Runtime type, and the Windows Runtime type is

your projection type, not the implementation types.

Okay, so we learned that using an unqualified type name from inside the implementation or

factory implementation namespace gives you the corresponding implementation type, not

the projection type. But what if you want the implementation type?

In theory, you could type the full name winrt::Namespace::ClassName , but really, all

you have to say is Namespace::ClassName . The lookup proceeds through the parent

namespaces, and it finds a match when it gets to winrt .

This shortcut is particularly handy when you have a deep namespace. Instead of the full

name winrt::Grandparent::Parent::Namespace::ClassName , you can write just

Namespace::ClassName .

Bonus chatter: All this confusion stems from the fact that we used the same name in three

namespaces. We could have avoided this by using different names for our two

implementation classes, so that they don’t collide with the projected class name, or with each

other.

https://devblogs.microsoft.com/oldnewthing/20210407-00/?p=105061

4/4

namespace winrt::MyNamespace::implementation
{
 struct ClassNameImpl : ClassNameT<ClassNameImpl>
 {
 ClassName CreateChild()
 { return make<ClassNameImpl>(...); }

 Windows::Foundation::IAsyncOperation<ClassName>
 CreateChildAsync()
 {
 /* do stuff */
 co_return make<ClassNameImpl>(...);
 }
 };
}

namespace winrt::MyNamespace::factory_implementation
{
 struct ClassNameFact : ClassNameT<ClassNameFact, implementation::ClassNameImpl>
 {
 static ClassName Create()
 { return make<ClassNameFact>(); }
 };
}

This way, ClassName always refers to the projection class.

