
1/2

March 6, 2023

I can create a read-only page, but why not a write-only
page?

devblogs.microsoft.com/oldnewthing/20230306-00

Raymond Chen

There is an interesting hole in the diagram of page protections supported by the Virtual ‐

Alloc function:

 Deny write Allow write

Deny read
PAGE_NO ‐
ACCESS

???

Allow read
PAGE_READ ‐
ONLY

PAGE_READ ‐
WRITE

The missing value is PAGE_WRITE ONLY . Why is there no PAGE_WRITE ONLY ?

The short answer is “Because no processor supports it.”

The page protections in most processors are not three bits, one for read, one for write, and

one for execute. Different processors do things differently.¹ Typically, they start with a valid

bit, which says whether any access is allowed at all. If the valid bit is not set, then you

immediately get PAGE_NO ACCESS , and the rest of the page table entry is ignored.² If the

valid bit is set, then other bits are used to configure the details of the protection. One way is

to have separate bits for controlling write and execute access independently.³ Another is to

take a few bits and treat them as an enumeration which selects from a list of possible page

protection combinations, and “write-only” is not on the list of possibilities. Either way, there

is no separate read bit; the read bit overloaded onto the valid bit: Every valid page is

implicitly readable.

Naturally, if no processors support an operation, there’s no point adding a flag for it to the

operating system. “Hi, here’s a flag that is not supported by anyone. If you set it, the

operation always fails. Good luck with that!”

https://devblogs.microsoft.com/oldnewthing/20230306-00/?p=107902

2/2

It’s also unclear how write-only pages would work anyway. CPUs nowadays typically do not

issue precise writes. Rather, when you issue a write, the CPU loads the entire enclosing cache

line, modifies the written bytes, and then writes the updated cache line back to memory

(usually lazily). If the page were write-only, then the attempt to load the enclosing cache line

would fail with an access violation,⁴ and you’d never get around to writing the updated cache

line.

¹ For the purpose of this discussion, we’re looking only at user mode access.

² Operating systems often use the ignored bits to record information about the invalid page,

so that if a page fault occurs, the operating system can quickly look up what it should do next.

For example, the unused bits could be a pointer to a kernel data structure that says, “If

somebody tries to access this page, then instead of raising an access violation, try to page the

data in from the page file. The data is stored in frame N. After you read the data, change the

protection to PAGE_READ ONLY and restart the instruction.”

³ On some processors, the control is done by setting the bit to allow access. On other

processors, setting the bit denies access.

⁴ Alternatively, the CPU might load the cache line, bypassing the write-only protection, but

try to prevent the code from observing any of the values that were loaded into that cache line.

This could end up vulnerable to a side-channel attack.

