
1/51

February 2, 2024

Zero2Automated – Complete Custom Sample Challenge
Analysis

0x0d4y.blog/zero2automated-custom-sample/

The road so far…

In this post, I will analyze the customized sample of the Zero2Automated: The Advanced
Malware Analysis course, which is presented to us when we reach the halfway point of the
course. At this point, the course has already explored in a deep and practical way subjects
such as Cryptography Algorithms, Unpacking Methods, In-depth analysis of first and second
stages, development of automations for configuration extraction and communication
emulation, in addition to various methods of evading defenses such as Process Injections (a
lot of them) and Anti-Debug, Anti-VM and Anti-Analysis methods, and persistence methods.

Therefore, despite being halfway there, a lot of content was given until we reached this first
challenge. And in this article, we will explore customized sampling, with all the knowledge
acquired in the course so far.

Incident Response Team Email (Storytelling)

https://0x0d4y.blog/zero2automated-custom-sample/
https://www.0ffset.net/training/zero2auto/

2/51

Hi there,

During an ongoing investigation, one of our IR team members managed to locate an
unknown sample on an infected machine belonging to one of our clients. We cannot pass
that sample onto you currently as we are still analyzing it to determine what data
was exfiltrated. However, one of our backend analysts developed a YARA rule based on
the malware packer, and we were able to locate a similar binary that seemed to be an
earlier version of the sample we're dealing with. Would you be able to take a look at
it? We're all hands on deck here, dealing with this situation, and so we are unable
to take a look at it ourselves.

 We're not too sure how much the binary has changed, though developing some automation
tools might be a good idea, in case the threat actors behind it start utilizing
something like Cutwail to push their samples.

 I have uploaded the sample alongside this email.

Thanks, and Good Luck!

Binary Triage

In this section I will start my binary analysis triage methodology.

This triage that I do before carrying out more in-depth analyses, aims to identify some
important information to identify initial characteristics of the binaries, and answer some
questions, such as:

Is the binary packed/encrypted? Which sections of the PE binary contain these clues?
Are there cryptographic operations using XOR, with the purpose of obfuscating code,
strings, etc.?
Are there some interesting strings, such as artifact names, commands, URLs, IP
addresses, etc.?

With the answers to these questions, I begin to make decisions for the next phases of the
analysis.

To collect this information, I used a tool that I developed (and am still developing), called
re_triage, which aims to collect primary information.

And when executing it, as we can see below, we are able to identify two sections (.text and
.rsrc) of the binary that have high entropy, and this can be a strong indication that the binary
is packed.

https://github.com/Icaro-Cesar/RE_AutomationPythonScripts/blob/main/RE_Automation/binary_triage/re_triage.py

3/51

Due to the difference in entropy between the .text and .rsrc sections, we can assume that
the .rsrc section contains the second packed stage, while the .text may contain
cryptographic operations, which consequently increase its entropy.

This assumption gains a little more strength, even when analyzing the output of my script,
which shows several XOR operations that resemble cryptographic operations, exactly in the
.text section (with low entropy compared to .rsrc).

4/51

In addition to the information focused on entropy, possible cryptographic operations and
packing patterns, it is also possible to observe in the output of my script, that this sample
contains some functions related to Anti-Debug techniques, Process/Thread Enumeration
and possible execution of some technique Process Injection, in addition to functions that
may have the ability to drop other stages of the infection.

5/51

Now that we have an overview of the sample’s possible capabilities and characteristics, we
will validate this information and identify new capabilities in more depth.

Identifying the Anti-Debug Implementation

In order to identify the sample flow, and identify if it is packed, and if before reaching the
unpacking process it will implement any of the Anti-Debug techniques that we identified in
the previous section, we will start the reverse engineering process , to identify the current
stream of this sample.

6/51

When opening the sample in IDA, we are redirected directly to the sample’s main function.
However, before the main function, there is a function that executes Anti-VM and Anti-
Debug techniques, before loading the main function. In the image below, we can see that
mainly the anti_debug function, if true, the program goes to the exit flow of the process.

At the beginning of the anti_debug function, the sample executes the
IsProcessorFeaturePresent function, to collect availability information about the _fastfail
feature.

At the end of the anti_debug function, this is where the execution of the
IsDebuggerPresent function is found, in addition to the use of the
SetUnhandledExceptionFilter and UnhandledExceptionFilter functions, also as
complements in the execution of the tactical objective of Anti-Debugging.

https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-isprocessorfeaturepresent
https://learn.microsoft.com/en-us/cpp/intrinsics/fastfail?view=msvc-170
https://learn.microsoft.com/en-us/windows/win32/api/debugapi/nf-debugapi-isdebuggerpresent
https://learn.microsoft.com/en-us/windows/win32/api/errhandlingapi/nf-errhandlingapi-setunhandledexceptionfilter
https://learn.microsoft.com/en-us/windows/win32/api/errhandlingapi/nf-errhandlingapi-unhandledexceptionfilter

7/51

Reversing the Main Function

After identifying the implementation of Anti-Debugging techniques, in this section we will
focus on analyzing the main function of the sample.

As soon as we open the main function, we come across the implementation of API
Hashing/String Encryption, with the purpose of obfuscating API calls and consequently
hiding their main capabilities.

Just for the purpose of clarifying what API Hashing or String Encryption is, and how
adversaries implement this evasion technique, below is an illustration of the hashing process
using the Sleep API as an example.

Now that we know the API hashing process, below we can see this same technique being
implemented in the main function.

https://attack.mitre.org/techniques/T1027/007/

8/51

As you can see, the API Hashing technique is implemented in the main function, along with
the technique for resolving these APIs dynamically (through LoadLibraryA and
GetProcAddress) with the purpose of making analysis more difficult and trying to evade
defenses.

Above we can see the following pattern:

The sub_401300 function is executed, receiving an encrypted string as an argument.
After this, the return from the execution of LoadLibraryA and GetProcAddress is
received in variables, which receive the string, possibly decrypted, as one of the
arguments. Thus, carrying out the execution of the library and function that refer to
these encrypted strings.

This is repeated throughout the main function code. If we check the Microsoft documentation
regarding the LoadLibraryA function, we can see that the purpose of loading a library (DLL)
in the process’s memory scope, in which its name must be passed as an argument.

HMODULE LoadLibraryA(
 [in] LPCSTR lpLibFileName
);

We can see this exact pattern in the pseudo-code above, where LoadLibraryA is receiving
the string ‘a5ea5Qpy4‘ (or ‘.5ea5/QPY4//‘) as a parameter. Therefore, we can assume that
this string is a library that will be decrypted by the sub_401300 function, and passed as an
argument to LoadLibraryA to load it.

If we also look at Microsoft’s documentation regarding the GetProcAddress function, we can
see that it also follows the pattern observed in the pseudo-code.

FARPROC GetProcAddress(
 [in] HMODULE hModule,
 [in] LPCSTR lpProcName
);

https://learn.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-loadlibrarya
https://learn.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-getprocaddress

9/51

In other words, through the GetProcAddress implementation code, we can validate that in
the main function, the following flow is followed:

The name of a library is decrypted;
The name of a function is decrypted;
The LoadLibraryA function receives the decrypted name of the library as an
argument, with the aim of loading it into the process’s memory scope;
The GetProcMemory function receives the handle of the library loaded by the
LoadLibraryA function, and the decrypted name of a certain function belonging to the
library in question.

If we check the xrefs of the sub_401300 function, we are able to observe that it is widely
used, repetitively in the main and sub_401000 functions.

Perfect. But without knowing exactly which library and functions are being used, our analysis
will be a little difficult to carry out. Therefore, let’s analyze the sub_401300 function, to
understand how this function performs the string decryption process. Below is the pseudo-
code of the API decryption function.

10/51

If we look closely, the algorithm is very simple to understand, it consists of a table of strings
and the use of this table as an index to perform substitutions throughout the code.

I developed the Python version of this algorithm, and you can find the code below.

11/51

def decode_string(encrypted_string):

 index = 0
 substitution_table =
"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ01234567890./="

 while index < len(encrypted_string): # Main loop to decode each character
in the string
 current_char = encrypted_string[index] # Get the current character
 new_char = substitution_table[0] # Obtain the new character based on
the substitution table
 char_index = substitution_table.index(current_char) if current_char in
substitution_table else None

 if char_index is not None: # Update the new character based on
the substitution logic
 table_index = char_index
 table_length = len(substitution_table)
 new_index = (table_index + 13) if (table_index + 13) < table_length else
(table_index - table_length + 13)
 new_char = substitution_table[new_index]

 encrypted_string = encrypted_string[:index] + new_char +
encrypted_string[index+1:] # Modify the original string with the decoded
character
 index += 1 # Move to the next character

 return encrypted_string

encrypted_string = input("\n\033[1;35mPut here the encrypted strings (multiple
strings separated by comma):\033[m ")
list_encryp_strings = encrypted_string.split(',')
for decrypt in list_encryp_strings:
 decrypt_strings = decode_string(decrypt)
 print(f"\nThe encrypted string \033[1;34m{decrypt}\033[m is
\033[1;31m{decrypt_strings}\033[m\n")

Below, we can observe the execution of this script, to decrypt all strings decrypted by the
sub_401300 function.

12/51

Now that we know which libraries (DLLs) and functions are being loaded and called by the
main function code, we can rename variables and strings in order to make the code more
readable. Below is the documented version of the main function.

13/51

In the pseudo-code above, the main function loads the kernel32 library, and calls several
functions to locate and manipulate a certain resource, which cannot be identified statically,
and allocates it in a memory space through the VirtualAlloc function.

Now let’s move on to the second and final part of the main function code, which can be seen
below.

In the pseudo-code above, we can observe that after carrying out the process of resource
manipulation and allocation of this resource in memory, said resource is decrypted using an
algorithm that contains the RC4 pattern (the 0x100 value in a loop).

After the decryption process, the function (named by me, and was tagged as sub_401000,
previously identified in the xrefs of the string decryption function)
dynamic_string_decrypt_create_proc is called, which receives the resource as an
argument. The name I gave the function is very suggestive, but below, we will explore it in
more detail.

Reversing the dynamic_string_decrypt_create_proc function

In this section, I will describe the analysis of the dynamic_string_decrypt_create_proc
function.

In this function, we see the use of the string decryption function equally used as in the main
function. However, this function has a specific purpose as we will identify throughout this
section.

14/51

Below, we can see that at the beginning of the pseudo-code of the
dynamic_string_decrypt_create_proc function, it loads the CreateProcessA API and
executes it, creating a process in a suspended state. The code then loads and executes the
VirtualAlloc API to allocate memory space with read, write, and execute permissions. The
return from VirtualAlloc execution is the base address of the allocated memory space,
which is passed as an argument to the GetThreadContext API execution (also decrypted
and loaded).

After executing the activities above, the function will read, allocate and write to the memory
space of the process in a suspended state, as we can see below.

15/51

And as a final action, the function will finally execute the Thread of the suspended process.

16/51

The flow of actions performed in this function is very similar to the Process Hollowing
technique.

I think that so far, we can understand that this sample we are analyzing is the first stage that
will decrypt the second stage and inject it into the memory space of a child process, created
by itself.

Let’s continue with our dynamic analysis, with the purpose of identifying the second stage
and extracting it from memory, with the aim of reversing it and understanding the actions that
will be performed in the second stage.

Identifying and Extracting the Second Stage

As we were able to identify in the previous section, sampling is just a first stage, which will
decrypt a second stage via the RC4 algorithm, create a child process, and inject the second
stage into its memory scope.

Now that we know how the first stage code works, let’s set some strategic breakpoints, to
identify the second stage before it is injected into another process, and identify which
process is the target of this injection.

To do this, we need to set some breakpoints in:

Before performing decryption using the RC4 algorithm, with the purpose of monitoring
the decryption process, and identifying the decrypted binary in memory so that we can
extract them.
CreateProcessA: as we know, this API is called indirectly, with the purpose of
complicating our analysis and evading detection. However, as we already know the
code for this sample, we know the address where we will set our breakpoint.
VirtualAllocEx: to try to extract the second stage.
WriteProcessMemory: for the purpose of identifying which data will be written to the
memory scope of which process.
ResumeThread: with the aim of identifying the exact moment when the second stage
will be executed in the remote process.
IsDebuggerPresent: as we saw that it will be executed, before the main function is
executed

Below we can observe the selected breakpoints.

17/51

Now that we have established each breakpoint, let’s move on to the dynamic analysis.

Interestingly, our IsDebuggerPresent breakpoint was not triggered, and we went directly to
the breakpoint before the RC4 routine loop.

It is possible to identify that at the address ss:[ebp+eax-108], the first loop writes data
during its execution.

18/51

At the end of the loop, we see two character structures, the first appears to be the alphabet,
and the second a set of apparently random data.

19/51

At the end of the second loop, the entire possible alphabet that we saw previously was
transformed into pseudo-random data.

20/51

At the end of the entire loop, the data continued to appear pseudo-random, so we moved on
to the next breakpoint, the indirect call via the CreateProcessA API.

21/51

When executing the CreateProcessA call, you can see that it creates a process with the
same name as itself.

Just in case, let’s dump this new process created.

22/51

Having saved the second process as a precaution, we will continue executing the sample,
until the next breakpoint triggers.

And the VirtualAllocEx breakpoint has worked, now we can know what the allocated space
will be, and what can be written in the scope of this allocated memory.

23/51

If we take a look at the stack before executing the VirtualAllocEx call, we can understand
what is happening.

Below we can see the parameters passed to VirtualAllocEx to be executed. The first
parameter is the most interesting (identified as 0000010c), as it refers to the Handle of the
process that will suffer from this action, that is, the process that will have space allocated in
memory.

When we look at the handles of the current process that we are debugging, we can see that
handle 0x10c is the handle for the child process created in suspended state.

24/51

We continue execution until our next breakpoint triggers. The breakpoint in is the indirect call
to the WriteProcessMemory API.

As we can see below, in the WriteProcessMemory implementation structure, the third
parameter that must be in the Stack is the lpBuffer, which must contain the memory address
for the data that will be written to the process indicated in the first parameter (hProcess),
which will contain the process handle.

BOOL WriteProcessMemory(
 [in] HANDLE hProcess,
 [in] LPVOID lpBaseAddress,
 [in] LPCVOID lpBuffer,
 [in] SIZE_T nSize,
 [out] SIZE_T *lpNumberOfBytesWritten
);

In the image below, in addition to being able to identify the indirect call to the
WriteProcessMemory API, we are also able to validate the target process (the same handle
identified in the previous call) and the payload of the second stage that will be written to the
remote process.

https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-writeprocessmemory

25/51

Now that we have identified the second stage payload, we can move on to the memory
address that contains this data, through x32dbg.

26/51

When we identify the location where the second stage is stored, we simply extract the dump
as a file

27/51

In this section, we analyze the first stage of the ‘sent by the IR team‘ malware. In this first
stage, we identify the use of API hashing encryption techniques to resolve them in memory,
and call them indirectly. Furthermore, we identified that the first stage executes the PE
Injection technique in a remote process (a child process of the same binary, however, with
the second stage injected into its memory scope).

In the next section, we will perform the same analysis on the second stage extracted from
the first stage.

28/51

Reversing Second Stage

In this section we will perform the analysis of the second stage, extracted during the analysis
of the first stage.

Below, we can see the overall image of the flowchart of the execution of the main function
code.

And right at the beginning of the function, we are presented with some conditionals that
perform decryption using the RC4 algorithm, and perform Hashed API resolution.

29/51

We can check the xrefs referring to the rc4_routine function, with the aim of identifying when
this function is called, and trying to understand the contexts of its execution.

And as we can see in the image below, this function is performed in two functions:

main – current function;
dynamic_library_load – function seen in the previous image.

30/51

If we check the use of the rc4_routine function within the dynamic_library_load function,
we will see that this function is responsible for decrypting the libraries that will be loaded at
run time.

The most interesting thing is to understand that both functions will only be executed
depending on the conditional met. If the result of the rc4_routine function is as expected, the
sample execution flow will execute the sub_401DC0 function.

31/51

And within this function, we are presented with another execution of the Hashing API
technique, using the dynamic_library_load function

32/51

When identifying a function, which receives a hash as a parameter, it is a strong indication
that the API Hashing technique is being applied. Therefore, we need to use tools like
HashDB to identify which API these hashes are applied to.

We could use the HashDB plugin for IDA or Binary Ninja, but thinking about new future
malware researchers, who don’t have money to buy a license (for now), I developed and still
update a script that automates the basic task of HashDB, called hashdb_automated. This
is because API Hashing is extremely common in malware, and these young malware
researchers could be left in the dark without Plugins.

Below we can observe the execution of the script, and the discovery of the APIs that are
being resolved by this function.

As you can see in the image above, this function is resolving APIs related to communication
capabilities, possibly with adversaries’ C&C.

Having this information in hand, we can now rename variables, objects and the function
name, with the aim of making the code more readable.

https://github.com/Icaro-Cesar/RE_AutomationPythonScripts/blob/main/RE_Automation/HashDB/hashdb_automated.py

33/51

After resolving the APIs related to communication capacity, the function code performs an
XOR operation to decrypt two sets of bytes in hexadecimal, using the key 0xc5.

I implemented this (and all the others that will be seen in this section) algorithm observed in
the IDA pseudo-code in Python, with the aim of decrypting the data and identifying the
deobfuscated information. The script can be found below.

def rol1_url(byte, shift):
 return ((byte << shift) | (byte >> (8 - shift))) & 0xFF

def decrypt_url(v5):
 for i in range(len(v5)):
 v5[i] = rol1_url(v5[i], 4) ^ 0xC5

 decrypted_url = ''.join([chr(byte) for byte in v5 if byte != 0])
 return decrypted_url

xored_url = [
 0xDA, 0x1B, 0x1B, 0x5B, 0x6B, 0xFF, 0xAE, 0xAE, 0x5B, 0x4A, 0x6B, 0x1B, 0x0A,
0x7A, 0xCA, 0xBA, 0xBE, 0x6A, 0xAA, 0x8A, 0xAE, 0x7B, 0x4A, 0x2B, 0xAE, 0x8A, 0x98,
0x0A, 0x8A, 0xCF, 0x18, 0x28, 0xEA, 0x00
]
decrypted_url = decrypt_url(xored_url)
print(f"\033[32mString Decrypted \033[m[\033[33mdownload_inject\033[m]:
\033[31m{decrypted_url}\033\n")

Below in the script execution, we are able to identify that the XOR operation decrypts a URL.

If we access the decrypted URL, it takes us to another URL that stores a PNG file.

https://attack.mitre.org/techniques/T1140/

34/51

If we access this other URL, we will have access to a PNG file with practically no content.

If we download this PNG file, and open it in a Hexadecimal reader/editor (I used xxd), we will
be able to identify the string redaolurc, which is basically cruloader backwards, followed by
several possibly encrypted bytes.

Analysis of the content of this PNG file will be explored in the next section. Now let’s
continue with the code flow of the function we are analyzing.

After decrypting the URL string, two functions will be executed, sub_401290 and
sub_4013A0

35/51

First let’s analyze the sub_401290 function, which takes the decrypted URL string as an
argument.

After de-hashing the APIs in the previous function, it is clear that this function is responsible
for downloading the PNG file, through the decrypted URL.

36/51

Now that we understand the purpose of the previous function (now called
download_file_pastebin), let’s analyze the sub_4013A0 function.

This function is a bit long, so let’s break it down into parts. At the beginning of the section,
the execution of an XOR operation and the dynamic resolution of some APIs that will be
used below are identified.

Using the hashdb_automated script, we are able to identify that the hash algorithm used
again was crc32, and that the APIs being resolved have the ability to write files to disk.

If we follow the flow we are in, the malware has downloaded the PNG file and wants to save
it to disk.

37/51

Further down in the sub_4013A0 function, we can observe the use of these APIs, first
identifying the current user’s temporary directory, followed by the creation of a directory with
the name of the file (possibly a directory with the name of cruloader), followed by the
creation of the file within of this directory.

At this stage of the sub_4013A0 function, we identify the dropper capacity of this sample.

38/51

Next there is another XOR operation for string decryption, which when implemented through
Python, revealed that it was the string c’ruloader‘, possibly a reference to the name of the
directory/file created previously.

Next, we have a decryption algorithm that takes the PNG file handle as an argument.
Possibly, this algorithm is for the extraction and decryption of the third stage, using the key
0x61, which is inside the PNG file.

39/51

Extraction and decryption of the third stage will be discussed in the next section. In the
meantime, let’s continue with the analysis of the second stage, to understand what will be
done with the third stage payload.

And then we reach the end of the function, where three last functions will be executed. The
sub_401D50, sub_401CA0 and sub_401750.

First, let’s look at the sub_401D50 function. This function is basically responsible for
resolving more APIs through de-hashing.

Once again, through hasdb we are able to identify the hashing algorithm (crc32, once again)
and the APIs corresponding to each Hash.

40/51

And after analyzing the resolution of the APIs that will be called, we can observe that the
code is preparing to perform some type of Remote Process Injection.

Basically the first function had the purpose of resolving the APIs, next, we will analyze the
next function sub_401CA0.

41/51

In this function we are exposed once again to an XOR operation for decryption using the key
0xa2.

Once again, I implemented this algorithm in Python and when I ran it, the absolute path of
the svchost binary was returned.

def rol1(byte, shift):
 return ((byte << shift) | (byte >> (8 - shift))) & 0xFF

def decrypt_svchost(svchost_encrypted):
 for i in range(len(svchost_encrypted)):
 svchost_encrypted[i] = rol1(svchost_encrypted[i], 4) ^ 0xA2

 decrypted_text = ''.join([chr(byte) for byte in reversed(svchost_encrypted)])
 return decrypted_text

svchost_encrypted = [0x7C, 0xAD, 0x7C, 0xC8, 0x6D, 0x1D, 0xDC, 0xAC, 0x1C, 0x4D,
0x1D, 0xEF, 0x09, 0x19, 0xFC,
0x7C,0x6D,0x1D,0xBD,0x1F,0xEF,0x1D,0x5D,0xDC,0x6C,0xCC,0xBC,0x5F,0xEF,0x89,0x1E]

decrypted_text = decrypt_svchost(svchost_encrypted)

print(f"\n\033[32mDecrypted String \033[m[\033[33msvchost_process_create\033[m]:
\033[31m{decrypted_text}")

With this information, we are able to improve pseudo-code reading by renaming variables,
functions and objects.

With this we are able to observe that after decrypting the string referring to the absolute path
of svchost, this string will be used as an argument in the process creation call (the process
will be created in suspended mode).

42/51

Now that we know the purpose of this function, let’s move on to the analysis of the
sub_401750 function, which we can already see that receives as parameters the handles of
the PNG file downloaded from pastebin, and the handle of the process created in
suspended mode from svchost.

As we analyzed the function, we again observed a large number of executions of the
dynamic API resolution function, through API Hashing.

43/51

Again, through hashdb, we identified that the hashes (crc32) refer to the set of APIs used to
execute the Process Hollowing technique.

44/51

And when we improve the visibility of our pseudo-code, it becomes clear that this function is
in fact responsible for executing the Process Hollowing technique in the created svchost
process in suspended mode.

45/51

Therefore, in this section we analyze the second stage of the sample, where we identify that
its purpose is to:

Download the PNG file that contains the third stage;
Extract the third stage from the PNG file;
Create a process in svchost suspended mode, and execute the Process Hollowing
technique to inject and execute the third stage in a benign process, with the purpose of
evading defenses.

In the next section, we will extract the third stage and analyze its final payload.

Extract and Reversing the Third Stage

As we observed during the analysis of the second stage, it extracts the third stage from
within the PNG file and decrypts the third stage through an XOR operation using the key
0x61.

https://attack.mitre.org/techniques/T1027/009/

46/51

Having this information, it is very easy to proceed with the extraction and decryption using
CyberChef. Using the XOR operation module and setting the key 0x61, we are quickly able
to observe a PE header in the output.

By adding the file extraction module, we are able to download the PE file.

47/51

Having the PE file (our third stage) in hand, we simply analyze it in IDA and we are now able
to see the final payload of our sample.

To validate that this is indeed the final payload, we simply need to execute the binary given
to us by the ‘IR team’.

Thus, our sample analysis comes to an end!

Now let’s venture into the process of identifying TTPs, tracking them through logs in the
Elastic Stack, and developing Yara rules.

Malware Behavior Tracking

In this section we will delve deeper into tracking the sample run in our laboratory, using
Elastic as a SIEM, with the purpose of trying to identify the infection steps that we identified
during our analysis.

Below we are able to identify the second phase being executed, using Sysmon’s Event ID 1
(Process Creation). In this log, we are observing the second phase by creating an svchost
process by executing the Process Hollowing technique, and executing the malicious
payload within the svchost process. At this point it is important to record the Process ID
(1688) of this new process, as we will use it to track the next phases.

https://www.ultimatewindowssecurity.com/securitylog/encyclopedia/event.aspx?eventid=90001

48/51

As we well know, the process is created in suspended mode until the second stage injects
the malicious payload and executes it through a Thread. And that is exactly what we can see
in the log record below, through Event ID 8 (CreateRemoteThread). The fact that a binary is
creating a remote Thread in a svchost process is suspicious enough.

And after executing the second stage’s malicious payload within the svchost process (PID
1688), we are able to identify the network connection with pastebin, in order to download the
third stage, through Event ID 22 (DnsQuery) and Event ID 3 (NetworkConnection) ,
respectively shown in the following two images.

https://www.ultimatewindowssecurity.com/securitylog/encyclopedia/event.aspx?eventid=90008
https://www.ultimatewindowssecurity.com/securitylog/encyclopedia/event.aspx?eventid=90022

49/51

We are also able to identify the disk writing of the PNG file, which contains the third stage
performed by the svchost process (PID 1688). As we can see in the following two images,
we are first able to identify Event ID 11 (FileCreate) by registering the PNG file download
cache, followed by the actual creation of the file output.jpg in the cruloader directory, within
the temporary directory.

https://www.ultimatewindowssecurity.com/securitylog/encyclopedia/event.aspx?eventid=90011

50/51

And finally, we are able to identify the execution of the third stage, which consists of the
svchost process containing the second stage (PID 1688) executing another svchost
process containing the third stage (PID 19372).

Therefore, in this section we were able to identify the behavior pattern of executing the
binary that was sent to us by the ‘IR team’.

This will help the IR, SOC and Threat Hunting teams understand the behavior of this
sample, and identify such behavior on other devices, allowing visibility into the scope of the
incident.

Conclusion

51/51

It was absurdly fun to work on this sample, it actually demands everything you should learn
in this first part of the Zero2Automated: The Advanced Malware Analysis course.
Excellent exercise, and very realistic! I hope this article has contributed to your analysis, if
you are stuck somewhere, and that you have learned something new here.

See you later!

