
1/3

January 30, 2023

Inside C++/WinRT: Apartment switching: COM without
COM

devblogs.microsoft.com/oldnewthing/20230130-00

Raymond Chen

One feature of the C++/WinRT library is that it can operate without the Component Object

Model (COM) services. It still uses the COM application binary interface (ABI), but it doesn’t

rely on the system COM services. If they aren’t available, it will just make do on its own.

This pattern of using COM as an ABI without using any COM services is sometimes called

nano-COM. Some other Windows components follow this pattern, such as DirectX and

Media Foundation.

In the case where COM is not active, C++/WinRT acts as if all threads are running in the

multi-threaded apartment (MTA), and therefore all apartment-switching operations have no

effect.

We have to add fallback code to the places where we ask COM for information or ask it to do

something for us.

inline std::pair<int32_t, int32_t> get_apartment_type() noexcept
{
 int32_t aptType;
 int32_t aptTypeQualifier;
 if (0 == WINRT_IMPL_CoGetApartmentType(
 &aptType, &aptTypeQualifier))
 {
 return { aptType, aptTypeQualifier };
 }
 else
 {
 return { 1 /* APTTYPE_MTA */,
 1 /* APTTYPEQUALIFIER_IMPLICIT_MTA */ };
 }
}

If we can’t get the apartment type, then we must be running in nano-COM, and we report

that we are running in the implicit MTA.

https://devblogs.microsoft.com/oldnewthing/20230130-00/?p=107761

2/3

struct resume_apartment_context
{
 resume_apartment_context() = default;
 resume_apartment_context(std::nullptr_t) :
 m_context(nullptr), m_context_type(-1) {}
 resume_apartment_context(
 resume_apartment_context const&) = default;
 resume_apartment_context(
 resume_apartment_context&& other) noexcept :
 m_context(std::move(other.m_context)),
 m_context_type(std::exchange(
 other.m_context_type, -1)) {}
 resume_apartment_context& operator=(
 resume_apartment_context const&) = default;
 resume_apartment_context& operator=(
 resume_apartment_context&& other) noexcept
 {
 m_context = std::move(other.m_context);
 m_context_type =
 std::exchange(other.m_context_type, -1);
 return *this;
 }

 bool valid() const noexcept
 {
 return m_context_type >= 0;
 }

 com_ptr<IContextCallback> m_context =
 try_capture<IContextCallback>(
 WINRT_IMPL_CoGetObjectContext);
 int32_t m_context_type = get_apartment_type().first;
};

If COM is not active, then Co Get Object Context fails, and instead of throwing an

exception, we just accept the failure, and m_context is a null pointer.

Most of the nonsense in the resume_apartment_context is just making sure that the

m_context_type resets to −1 when the m_context is moved out. It would be a lot

simpler if we had access to the movable_primitive template type we put together some time

ago.

We also have to teach the resume_apartment() function to deal with the case where COM

is not running.

https://devblogs.microsoft.com/oldnewthing/20230116-00/?p=107717

3/3

inline auto resume_apartment(
 resume_apartment_context const& context,
 coroutine_handle<> handle)
{
 WINRT_ASSERT(context.valid());
 if ((context.m_context == nullptr) ||
 (context.m_context ==
 try_capture<IContextCallback>(
 WINRT_IMPL_CoGetObjectContext)))
 {
 handle();
 }
 else if (context.m_context_type == 1 /* APTTYPE_MTA /)
 {
 resume_background(handle);
 }
 else if (is_sta_thread())
 {
 resume_apartment_on_threadpool(m_context, handle);
 }
 else
 {
 resume_apartment_sync(m_context, handle);
 }
}

If COM is not running, then every thread is the implicit MTA, and we can resume the

coroutine anywhere.

Next time, we’ll look at another hole in our framework: What happens when things go

wrong?

