
1/2

January 23, 2023

Inside C++/WinRT: Coroutine completions: The
oversimplified version

devblogs.microsoft.com/oldnewthing/20230123-00

Raymond Chen

C++/WinRT coroutines use the Completed delegate property to be notified when an

asynchronous operation is complete. There are multiple parts of the completion handler.

Today we’ll look at an oversimplified version, and then we will gradually build it up.

template <typename Async>
struct await_adapter
{
 await_adapter(Async const& async) : async(async) { }

 Async const& async;

 bool await_ready() const noexcept
 {
 return false;
 }

 void await_suspend(std::experimental::coroutine_handle<> handle) const
 {
 async.Completed([handle](auto&& ...)
 {
 handle.resume();
 });
 }

 auto await_resume() const
 {
 return async.GetResults();
 }
};

To co_await an IAsyncAction or IAsyncOperation , we register a completion callback

that resumes the awaiting coroutine. When the coroutine resumes, it will call

await_resume() to obtain the result of the co_await , and we propagate the result of the

GetResults() method.

https://devblogs.microsoft.com/oldnewthing/20230123-00/?p=107742

2/2

We don’t particularly care about the parameters passed to the completion delegate: Those tell

us whether the asynchronous work completed successfully, was cancelled, or failed outright,

but we don’t need to remember that information because GetResults() will report the

information again: If the asynchronous work did not complete successfully, then

GetResults() will thrown an exception describing why it was not successful.

As things go, this is a fairly standard implementation of a coroutine awaiter, although there is

a race condition we need to fix:

 void await_suspend(std::experimental::coroutine_handle<> handle) const
 {
 auto extend_lifetime = async;
 async.Completed([handle](auto&& ...)
 {
 handle.resume();
 });
 }

If the completion handler runs before Completed() returns, then we end up destroying the

async while there is still an active call on it. This is a problem I called out at the start of my

coroutine series. To fix this, we make a local copy of the async to extend its lifetime to the

end of the await_suspend function.

This is just the starting point for C++/WinRT coroutine completion handlers. Next time,

we’ll add apartment-preserving behavior.

https://devblogs.microsoft.com/oldnewthing/20191209-00/?p=103195

