
1/11

January 23, 2023

Activation Context Cache Poisoning: Exploiting CSRSS
for Privilege Escalation

thezdi.com/blog/2023/1/23/activation-context-cache-poisoning-exploiting-csrss-for-privilege-escalation

January 23, 2023 | Simon Zuckerbraun
SUBSCRIBE

Starting in July of 2022, the Windows CSRSS process entered the consciousness of the
infosec community as the source of several local privilege escalation vulnerabilities in
Microsoft Windows. The first public information appeared on July 12 with the release of the
patch for CVE-2022-22047, which was being actively exploited. Shortly thereafter, Microsoft
published an article providing some technical details and revealing that the threat actor
involved was an Austrian hack-for-hire group tracked by Microsoft as KNOTWEED.
Fortuitously, these developments coincided with closely related research I had been
conducting, and in that same month, I reported to Microsoft two additional vulnerabilities
affecting the same component. These have now been patched as CVE-2022-37987 and
CVE-2022-37989 respectively. All these bugs, which have been commonly known as the
“CSRSS” bugs, are best understood as examples of a new class of privilege escalation
vulnerabilities: activation context cache poisoning. In this article, we will describe this new
bug class in depth. We will then explore the strengths and weaknesses of the code changes
that Microsoft has introduced in response.

https://www.thezdi.com/blog/2023/1/23/activation-context-cache-poisoning-exploiting-csrss-for-privilege-escalation
https://www.zerodayinitiative.com/rss/
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2022-22047
https://www.microsoft.com/en-us/security/blog/2022/07/27/untangling-knotweed-european-private-sector-offensive-actor-using-0-day-exploits/
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2022-37987
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2022-37989


2/11

Understanding Activation Contexts

To begin, we must understand some of the basics of activation contexts.

There are various Windows APIs that a process can use to load additional components.
The two most salient are LoadLibrary for the loading of DLLs, and CoCreateInstance for
instantiation of COM components. For the purpose of this discussion, we will focus primarily
on LoadLibrary, but parallel considerations apply to CoCreateInstance. Also, what applies
for LoadLibrary applies equally for implicit DLL loads via linkage.

LoadLibrary may be called with either an absolute or a relative path, but in either case,
ambiguity remains as to which version of the requested DLL is appropriate to load. For
example, even if an application specifically requests C:\Windows\System32\comctl32.dll,
there is no assurance that the comctl32.dll presently installed at that location on the local
machine is the version intended by the author of the application. This is one basic use-case
for activation contexts. An activation context is defined as state that Windows uses to
resolve (“bind”) a component reference to the appropriate component version. Every thread
always has exactly one activation context in effect (“active”) at any given time. To resolve a
reference, Windows uses the currently active activation context.

To specify activation context data for a thread, code can use the Activation Context APIs.
Much more commonly, though, an activation context is specified declaratively by deploying
a manifest. The manifest has the form of XML data. It is generally embedded as a resource
in an EXE or DLL, though Windows will alternatively look for a .manifest file sibling to an
EXE at launch.

Let’s see a representative example of a manifest. The following manifest is found as a
resource in notepad.exe on Windows 10 22H2 19045.2251 x64:

Figure 1: Manifest of notepad.exe

This manifest defines an activation context to be activated upon launch of notepad.exe.
Note the <dependency> element. It declares that the stated assembly version
(Microsoft.Windows.Common-Controls, version 6.0.0.0) should be incorporated. That
would be found within C:\Windows\WinSxS, the location for side-by-side assembly
installations. After probing, Windows will locate an acceptable match, having its own
manifest at C:\Windows\WinSxS\Manifests\amd64_microsoft.windows.common-
controls_6595b64144ccf1df_6.0.19041.1110_none_60b5254171f9507e.manifest:

Figure 2: Manifest of Microsoft.Windows.Common-Controls version 6.0.19041.1110 from
WinSxS

https://learn.microsoft.com/en-us/windows/win32/sbscs/activation-context-reference


3/11

The element <file name="comctl32.dll" … indicates that a file with that name is part of
the Microsoft.Windows.Common-Controls assembly. Windows will find it at the
corresponding location C:\Windows\WinSxS\amd64_microsoft.windows.common-
controls_6595b64144ccf1df_6.0.19041.1110_none_60b5254171f9507e\comctl32.dll.
(Note that WinSxS is a special folder whose structure is unique.)

In sum, these manifests set up an activation context for notepad.exe, so that when
notepad.exe loads comctl32.dll (whether through linkage, or through an explicit call to
LoadLibrary), the appropriate version of comctl32.dll will be located.

There is a great deal more to be discussed on the topic of activation contexts. The best all-
in-one resource on the topic I have found is the article here. The details presented above,
though, should be sufficient for our present purposes.

The Activation Context Cache

The procedure of locating manifests, parsing them, and probing for their dependencies
which themselves must be processed recursively, is fairly intensive both in terms of
computational steps and disk accesses. For this reason, Microsoft introduced a caching
mechanism. Naturally, for the cache to deliver a performance benefit, it must be capable of
persisting beyond the lifetime of a single process, so that cached results can be reused. It is
probably for this very reason that activation context creation does not take place in-process
but is instead delegated to the per-session CSRSS.EXE process. In the example above, the
notepad.exe process will start by making a cross-process call into CSRSS.EXE to create its
activation context. CSRSS.EXE performs all the required probing steps and places the results
into an in-memory activation context structure. It passes this structure back to the caller.
When the notepad.exe process needs to load a module such as comctl32.dll, it refers to
this in-memory activation context structure to direct the library load correctly. In addition to
returning the activation context structure to the caller, CSRSS.EXE keeps a copy in a cache.
The cache comes into play the next time notepad.exe launches. Then, when calling into
CSRSS.EXE to generate an activation context, CSRSS.EXE does not have to go through as
many steps to probe for on-disk manifests and parse them. Instead, it retrieves the
activation context it previously stored in the cache. To validate that the cached data is still
valid, it needs only to check that the file modification time has not changed for notepad.exe
(though I am intentionally omitting some less-important details for simplicity).

Within each cache entry, CSRSS stores the executable’s file modification time, to make it
possible to later determine if the cache entry is still valid, as I have just explained. It also
stores the 128-bit FILE_ID_INFORMATION value generated by NTFS that serves as a
guaranteed unique identifier for the file. This serves to prevent canonicalization bugs, in
which the same textual path could resolve to two different files due to changes to symbolic
links.

https://omnicognate.wordpress.com/2009/10/05/winsxs/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/ns-ntifs-file_id_information


4/11

As happens all too often, though, and despite the above precautions, the introduction of
caching is accompanied by major risks.

The Danger of Cache Poisoning

If the cache contains incorrect data, the execution of any process using that data can be
compromised. For example, incorrect (“poisoned”) data in the activation context cache
might result in an arbitrary DLL being loaded into a privileged process, yielding privilege
escalation.

How might the cache become poisoned? One problem with the architecture of activation
contexts is that, while CSRSS.EXE performs activation context generation and caching, it
does so for the benefit of the client (caller) process. Whatever activation context the client
wishes to create, it is the job of CSRSS to create that context. I suppose it is for this reason
that the interface supported by CSRSS is rather permissive, allowing the client process to
specify the exact manifest XML that will be parsed. This makes perfect sense when CSRSS
is thought of as a server acting on behalf of a client. But when caching comes into the
picture, this arrangement becomes toxic. The activation context generated from the
arbitrary manifest XML provided by the client becomes a semi-permanent part of the
system’s functioning and later can affect execution of a more highly privileged process.

CVE-2022-22047: KNOTWEED Exploits Cache Poisoning

This is the approach that was taken by the exploit code found in the wild, originating from
the KNOTWEED hacking group. The exploit crafts a call into CSRSS. The call requests an
activation context for a privileged executable and specifies a malicious manifest. The
manifest makes use of an undocumented manifest XML attribute named loadFrom. This
attribute allows unrestricted redirection of DLLs to any location on disk, including locations
outside of the normal search patch (the normal search path being the executable’s folder
and subfolders thereof, in addition to the shared assemblies installed to
C:\Windows\WinSxS):

Figure 3: A malicious manifest of the sort used in the KNOTWEED exploit

The manifest shown in Figure 3 specifies that all requests to load library advapi32.dll
should instead load c:\repro\payload.dll. After CSRSS.EXE creates the requested
activation context, it enters it into the cache. Upon a subsequent launch of the targeted
executable, CSRSS.EXE provides the targeted process with the cached activation context.
Thus, when the privileged process attempts to load the advapi32.dll module it depends
on, the attacker’s code will load instead.

To conduct this attack, the attacker’s only prerequisite is the ability to write the payload.dll
file somewhere within the filesystem. To ensure the cache will be affected, the exploit code
can first flood CSRSS with requests to clear out all existing cache entries, and conclude with



5/11

one final message to create a new poisoned entry for the targeted executable.

Note that the attacker must choose a target that is highly privileged but runs in the same
session as the interactive user (typically session 1, when there is only one interactive user).
This is because there is one CSRSS.EXE process per session, and hence one activation
context cache per session. The session-wide shared cache makes the attack possible.

Microsoft patched this as CVE-2022-22047 in the July 2022 patches, but the fix was
extremely narrow. It addressed only the usage of the undocumented loadFrom attribute.
After the patch, code in sxs.dll!CDllRedir::ContributorCallback, which handles DLL
redirections specified with loadFrom, sets a newly defined flag in the activation context
indicating that the activation context contains a DLL redirection. By checking this flag, CSRSS
will now treat any such activation context as non-cacheable. The logic that controls which
activation contexts are inserted into the cache is found in
sxssrv.dll!BaseSrvSxsCreateActivationContextFromStructEx.

This patch was too narrow, however. Activation context cache poisoning can be
accomplished in other ways besides using a loadFrom attribute, as we will now see.

CVE-2022-37989: Bypassing the Patch for the KNOTWEED Exploit

Upon examining the patch for the KNOTWEED exploit I realized that using loadFrom was
probably not the only way to write a malicious manifest that injects arbitrary code into the
target process. Indeed, I quickly found that I was able to write a manifest that injected code
via a different technique: declaring a dependent assembly that resides in an attacker-
controlled portion of the filesystem:

Figure 4: A malicious manifest using a dependentAssembly element

The malicious manifest shown in Figure 4 leads CSRSS to load a second manifest for the
named dependency, which it finds at the attacker-controlled location C:\pwn\pwn.MANIFEST:

Figure 5: Manifest for dependent assembly, stored at C:\pwn\pwn.MANIFEST

Here, advapi32.dll is the name of a DLL needed by the target process. As a result of the
combination of these two manifests, when the target process loads advapi32.dll, the DLL
will be loaded from the attacker-controlled location C:\pwn\ instead of the legitimate
location C:\Windows\System32\. As before, local privilege escalation results when the
highly privileged target process launches within the current user’s session.

Microsoft patched this variant in October 2022 as CVE-2022-37989. The patch was
analogous to the patch for the original KNOTWEED exploit. This time, the main code
change was in
sxs.dll!CNodeFactory::XMLParser_Element_doc_assembly_dependency_dependentAsse

https://msrc.microsoft.com/update-guide/vulnerability/CVE-2022-37989


6/11

mbly_assemblyIdentity, which handles the assemblyIdentity subelement of the
dependentAssembly element. After the patch, the code in that function checks if the name
of the dependency contains any forward slashes or backslashes. If so, it sets another newly
defined flag, much like the new flag introduced in the patch for CVE-2022-37989.
sxssrv.dll!BaseSrvSxsCreateActivationContextFromStructEx recognizes activation
contexts that have this flag set and does not enter them into the cache.

It’s dubious whether it was ever intended to allow the dependentAssembly element to
contain directory traversal. Nevertheless, Microsoft has decided to continue supporting this
behavior, perhaps for the sake of backwards compatibility. As a reasonable trade-off, they
made activation contexts non-cacheable when they rely on this behavior.

CVE-2022-37987: A New Vector for Activation Context Cache Poisoning

The two attacks discussed above both work by crafting messages to CSRSS to create a
customized, malicious activation context that differs from the legitimate activation context
that would normally be created by reading the manifest XML from disk. It is surprising that
CSRSS was architected to accept such sensitive data from untrusted clients. As I mentioned
earlier, this might be thought of as a reasonable design if you view CSRSS as merely
providing a service to a client. From that perspective, the client should be able to specify
whatever activation context details it wishes. The problem arises due to caching: crafted
data from an untrusted process can affect not only that client, but also other clients that
consult CSRSS afterwards.

As it happens, though, there is a completely separate vector for injecting arbitrary activation
context data into CSRSS, one that has nothing at all to do with the interface that CSRSS
exposes.

The trouble arises because CSRSS.EXE performs many of its filesystem accesses while
impersonating the caller. I believe this is unavoidable, because CSRSS needs to generate an
accurate activation context based upon how the caller would view the filesystem.

What is not so widely appreciated, however, is how vastly different a filesystem can appear
when operating under impersonation. In particular: An unprivileged process can redirect a
DOS device by creating an object namespace symlink. For example, if a process creates a
symlink from \??\C: to \GLOBAL??\C:\evil, then all accesses to the filesystem rooted at
C:\ are instead redirected to the root C:\evil. The redirection is not limited to the process
that creates the symlink. Rather, it affects the entire logon session. (The concept of “logon
session” is unrelated to the concept of Windows sessions. See here and here for an
explanation of logon sessions.) Not only that, but if a more highly privileged process
impersonates a token for which the symlink is active, the privileged process sees the bogus
filesystem as well. This is true even if the privileged process is in a different Windows
session, for example, session 0.

https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/local-and-global-ms-dos-device-names
https://learn.microsoft.com/en-us/windows/win32/secauthn/lsa-logon-sessions


7/11

If that spooks you, it should. James Forshaw discovered back in 2015 that it creates a
massive security hole. Any time a privileged process impersonates a user, and the
privileged process loads a library (or can be influenced to load a library) while that
impersonation is ongoing, that privileged process can be completely compromised. All an
attacker needs to do is redirect C:\ to a bogus location where the privileged process will
pick up a malicious version of the requested library.

To fix this security hole, Microsoft was compelled to add a new object attribute flag
recognized by NtOpenFile (and similar APIs) instructing the kernel to ignore any DOS
device redirections originating from the impersonation token. Ultimately, Microsoft publicly
documented this flag as OBJ_IGNORE_IMPERSONATED_DEVICEMAP. You can find its use in the
loader code in this excerpt from ntdll!LdrpMapDllNtFileName (ntdll.dll
10.0.19041.2130, Oct. 2022 patch level):

Figure 6: Excerpt from ntdll!LdrpMapDllNtFileName showing patch for CVE-2015-1644

By contrast, CSRSS prior to the December 2022 patch level still did not make use of the
OBJ_IGNORE_IMPERSONATED_DEVICEMAP flag. Thus, those filesystem operations CSRSS
performs under impersonation were still vulnerable to manipulation by an attacker who
establishes a DOS device redirection.

We can exploit this behavior by establishing a redirection for the C:\ device while CSRSS is
performing probing operations. The redirection will lead CSRSS into a bogus
C:\Windows\WinSxS\ folder, where we can place crafted manifests. CSRSS will cache the
activation context created from a crafted manifest, and local privilege escalation can then
proceed in the same way as in the other attacks described above.

For example, suppose we create a fake root at C:\ActCtX\. (The name ActCtX is arbitrary.)
Within C:\ActCtX we can place a fake Windows\WinSxS folder, containing a crafted copy of
the side-by-side assembly Microsoft.Windows.GdiPlus. The malicious copy is identical to
the original except for the addition of one dependency within the manifest:

Figure 7: Crafted manifest to be dropped to
C:\ActCtX\Windows\WinSxS\Manifests\amd64_microsoft.windows.gdiplus_6595b64144

ccf1df_1.1.19041.1706_none_919e8e54cc8d4ca1.manifest

This tricks CSRSS into thinking that Microsoft.Windows.GdiPlus has a dependency on an
assembly named ActCtX, located at the filesystem root. Since it will be looking for that
assembly, we’ll need to put one there:

Figure 8: Manifest for fake dependent assembly, to be dropped to
C:\ActCtX\ActCtX\ActCtX.MANIFEST

https://bugs.chromium.org/p/project-zero/issues/detail?id=240
https://twitter.com/tiraniddo/status/590931788006084609
https://twitter.com/gebaltas/status/1258830816563478528
https://learn.microsoft.com/en-us/windows/win32/api/ntdef/ns-ntdef-_object_attributes


8/11

Note that we drop this manifest to C:\ActCtX\ActCtX\ActCtX.MANIFEST, with an extra
folder named ActCtX in the path. This compensates for the fact that CSRSS will access this
manifest while the DOS device redirection is in effect. Credit to Oliver Lyak (@ly4k_) for
working out the details of the required folder structure.

The overall effect of these manifests is that CSRSS will generate an activation context
specifying that any load of advapi32.dll should be loaded from the attacker-controlled
location C:\ActCtX\advapi32.dll. CSRSS will cache this activation context. When the
cached activation context is reused for a privileged process in the same session, a load of
DLL advapi32.dll will instead load attacker code into the process, thus achieving privilege
escalation to NT AUTHORITY\SYSTEM.

Microsoft patched this in October 2022 as CVE-2022-37987. The patch consists of a
change to sxssrv.dll!BaseSrvSxsCreateActivationContextFromMessage. In that
function, the code retrieves the FILE_ID_INFORMATION of the EXE or DLL file for which
CSRSS is creating the activation context. This value becomes part of the cache key. We
mentioned earlier why this is an important precaution for ensuring that an activation context
created for one executable is not later retrieved from cache and applied to a different
executable. Prior to the patch, the NtQueryInformationFile operation that retrieves the
FILE_ID_INFORMATION value was not performed under impersonation. Therefore, when an
attacker would create a cache entry for, e.g.,
C:\Windows\System32\SomePrivilegedExecutable.exe, even if the attacker had
redirected C:\ to C:\evil, the resulting cache entry would apply to the legitimate
C:\Windows\System32\SomePrivilegedExecutable.exe as opposed to
C:\evil\Windows\System32\SomePrivilegedExecutable.exe. The latter would be useless
to an attacker, because C:\evil\Windows\System32\SomePrivilegedExecutable.exe is
not an executable that would ever be launched as a privileged process. Microsoft’s patch
was to add impersonation during the call to retrieve the FILE_ID_INFORMATION. The
intention of this change, apparently, was so that any activation context generated during a
DOS device redirection would apply only to a spoofed file and never to the legitimate one.

As soon as I examined this patch, I was quite skeptical of its effectiveness, and after further
analysis and experimentation I concluded that my skepticism was warranted. Unfortunately,
the patch accomplishes nothing. An attacker can bypass it just by removing the DOS device
redirection for the duration of the NtQueryInformationFile operation and putting the DOS
device redirection back in place immediately thereafter. With this adjustment, everything
can be made to work again in the exact way it worked prior to the patch. I additionally found
that an attacker can reliably determine the precise time to revert and reestablish the
redirection by using an oplock.

Nevertheless, there is no reason to panic. First it should be noted that in December 2022,
Microsoft augmented their patch for CVE-2022-37987 by adding in use of the
OBJ_IGNORE_IMPERSONATED_DEVICEMAP flag during manifest probing. Furthermore, although

https://msrc.microsoft.com/update-guide/vulnerability/CVE-2022-37987


9/11

the original patch for CVE-2022-37987 was easily bypassed, that did not necessarily mean
it was possible to make the attack work again. The reason is that the attack shown here
relies on directory traversal within a dependentAssembly element, and that technique was
effectively blocked by the patch for CVE-2022-37989 discussed earlier. You could instead
request a DLL redirection with a loadFrom attribute, but then you would be blocked similarly
by the CVE-2022-22047 patch. Other manifest features could be tried, but at this time I
don’t see any obvious paths to arbitrary code execution. One could specify a COM class
redirection, via a comClass element, to cause an unexpected DLL to be loaded into a
privileged process, but one would be limited to DLLs already existing in a secure location
(e.g., System32). This would cause a failure within the privileged process, but exploitation
for arbitrary code execution remains extremely difficult. Determining whether any potentially
hazardous features of manifest files remain unpatched is an interesting open research
question.

There is an additional reason the threat of local privilege escalation using activation context
cache poisoning is now greatly reduced: Microsoft has introduced a general mitigation.

Mitigating the Threat from Activation Context Cache Poisoning

In addition to the specific July 2022, October and December 2022 patches described
above, Microsoft wisely added a general mitigation in October 2022.

As of the October 2022 patch, an integrity level value is now stored together with each
cache entry. For example, an ordinary non-privileged process running within an interactive
session has an integrity level of Medium (decimal 8192, hex 0x2000). If this process calls
into CSRSS to create an activation context, and CSRSS creates a new corresponding cache
entry, the cache entry will be tagged with 0x2000 (Medium) as its integrity level.
Subsequently, if another process running at Medium or lower integrity calls into CSRSS to
create an activation context for the same executable, CSRSS will satisfy the request from the
cache. By contrast, if a process running at an integrity level higher than Medium makes
such a request, CSRSS will treat it as a cache miss. In this event, CSRSS will create an
activation context from scratch and evict the existing cache entry, replacing it with the new
one bearing the higher integrity label. This logic is found in
sxssrv!BaseSrvSxsCreateActivationContextFromStructEx.

This mitigation is highly beneficial. It enormously reduces the range of scenarios where the
cache might be a means of privilege escalation. For example, in the KNOTWORM attack
and all variations described above, a process running as Medium creates a malicious cache
entry, to be picked up later by a process running as NT AUTHORITY\SYSTEM within the user’s
session. As far as I am aware, in a generic install of Windows, all processes that launch as
NT AUTHORITY\SYSTEM within an interactive session have an integrity level of System

https://learn.microsoft.com/en-us/windows/win32/sbscs/assembly-manifests#:~:text=the%20hash%20algorithm.-,comClass,-A%20subelement%20of
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-dtyp/81d92bba-d22b-4a8c-908a-554ab29148ab#:~:text=low%20integrity%20level.-,ML_MEDIUM,-S%2D1%2D16
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-dtyp/81d92bba-d22b-4a8c-908a-554ab29148ab#:~:text=high%20integrity%20level.-,ML_SYSTEM,-S%2D1%2D16


10/11

(decimal 16384, hex 0x4000). So, thanks to this mitigation, when it comes time for the
cache entry to be retrieved for use by the privileged process, CSRSS will discard the lower-
integrity entry, so that the privileged process will remain completely unaffected by it.

This mitigation is not a panacea. Activation context cache poisoning remains a viable attack
technique, but only in a much-reduced set of circumstances. Recall that there is one
CSRSS.EXE process per session, so by nature, the cache is per-session. Add to this the
restriction imposed by the mitigation, that a cache entry created by a lower-integrity process
will never be picked up by a higher-integrity process. There remains a small subset of
privilege escalation scenarios that skirt these restrictions. I will give two examples:

• The Dnscache (also known as “DNS Client”) service process runs as NETWORK SERVICE,
but SeImpersonatePrivilege has been removed from its token. Technically, this makes
Dnscache a low-privileged process. If an attacker compromises this process, it is ordinarily
not trivial to escalate to NT AUTHORITY\SYSTEM. Nevertheless, since the process runs with
System integrity (not to be confused with NT AUTHORITY\SYSTEM), and its session is session
0, malicious code running within Dnscache could poison the activation context cache to
compromise any service running in session 0 as NT AUTHORITY\SYSTEM. Note, though, that
to complete the privilege escalation, it would also be necessary to find an unpatched
manifest feature, as discussed earlier.

• dwm.exe is a process that runs in each interactive session. It runs as the interactive user,
but with System integrity. Therefore, an attacker who achieves code execution in dwm.exe
would be in a position to create a cache entry with System integrity level that would be
picked up by highly privileged processes that also run within the interactive session, just as
in the original KNOTWEED attack. Notably, there has been a report of probable
compromise of dwm.exe used by an exploit chain in the wild, though since that report
predates the cache mitigation, the attacker in that case must have had a different aim in
compromising dwm.exe. Again, to complete the privilege escalation, an unpatched manifest
feature must be found.

Conclusion

We have taken the wraps off a new bug class in Microsoft Windows, which we call
activation context cache poisoning. Successful exploitation generally results in privilege
escalation, as achieved in the wild by the KNOTWEED group. The vulnerabilities recently
disclosed as the “CSRSS” vulnerabilities all fall into this new bug class. Though Microsoft
has now released a general mitigation, corner cases remain that fall outside the mitigation’s
scope. It remains an open research question whether Microsoft’s specific patches for the
known vulnerabilities are sufficient to make activation contexts safely cacheable across
processes.



11/11

Follow us on Twitter, Mastodon, LinkedIn, or Instagram for the latest updates from the ZDI
and any new developments we may find in this new bug class. 

Microsoft
Research
CSRSS

BACK TO THE BLOG

https://www.twitter.com/thezdi
https://infosec.exchange/@thezdi
https://www.linkedin.com/company/zerodayinitiative
https://www.instagram.com/thezdi
https://storage.googleapis.com/blog?tag=Microsoft
https://storage.googleapis.com/blog?tag=Research
https://storage.googleapis.com/blog?tag=CSRSS
https://storage.googleapis.com/blog

