
1/3

January 9, 2023

On leading underscores and names reserved by the C
and C++ languages

devblogs.microsoft.com/oldnewthing/20230109-00

Raymond Chen

The C and C++ languages reserve certain categories of names for the implementation, which

means that you cannot use them in your own code. Some are reserved unconditionally,

precluding their use for for variable names, parameter names, classes, methods, macros,

whatever. Others are reserved only in certain contexts.

The rules for C++ are collected in the [lex.name] chapter. The rules for C happen to match

the C++ rules for the most part, (section 7.1.3 “Reserved identifiers“), so that makes things

easier to remember.

Pattern Conditions

Begins with two underscores Reserved

Begins with underscore and uppercase
letter

Reserved

Begins with underscore and something else Reserved in global scope (includes
macros)

Contains two consecutive underscores Reserved in C++ (but okay in C)

Note that a popular convention of prefixing private members with an underscore runs afoul

of these rules if the member name begins with an uppercase letter.

class Widget
{
public:
 Widget();

private:
 int _size; // okay
 void _Toggle(); // not okay
};

https://devblogs.microsoft.com/oldnewthing/20230109-00/?p=107685
https://timsong-cpp.github.io/cppwp/lex.name#3
https://docs.microsoft.com/en-us/cpp/c-language/c-identifiers?view=msvc-170
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf

2/3

The C language does not have namespaces, so it also must reserve names in the global

namespace for future expansion. Some names may not be used by symbols with external

linkage. You can use them for type names, enumeration members, local variables, and

functions or global variables declared with static storage class, but not for extern functions or

extern global variables.

// Not allowed: Identifier with external linkage
// beginning with "str" and a lowercase letter.
int strategy;
void strafe() { /* ... */ }

// Allowed: Identifier with internal linkage beginning
// with "str" and a lowercase letter.
static int strawberry;
static void stream_video() { /* ... */ }

Furthermore, if you include the corresponding header file, the names are permitted to be

shadowed by function-like macros. This means that if you intend to use a reserved name for

someting without external linkage, you must first #undef it or enclose the name in

parentheses to prevent it from being treated as a macro.

// Including this header may result in the definition
// of a function-like macro named "strategy".
#include <string.h>

// Must enclose in parentheses to prevent misinterpretation
// as function-like macro.
static void (strategy)();

As of C11, identifiers matching the following regular expressions may not be used for symbols

with external linkage. (The list is given in section 7.31: “Future library directions”.) There are

also reserved names for type definitions and macros, but I won’t list them here.

Pattern Header

cerfc?[fl]? , cexp2[fl]? ,
 cexpm1[fl]? , clog1[0p][fl]? ,

 clog2[fl]? , c[lt]gamma[fl]?

complex.h

is[a-z].* , to[a-z].* ctype.h , wctype.h

atomic_[a-z].* stdatomic.h

str[a-z].* stdlib.h , string.h

mem[a-z].* string.h

wcs[a-z].* string.h , wchar.h

3/3

cnd_[a-z].* , mtx_[a-z].* ,
 thrd_[a-z].* , tss_[a-z].*

thread.h

It may come as a surprise that the C language reserves identifiers like strong , island ,

and together , but it does.

Bonus chatter: Windows header files have historically not been conscientious about

avoiding these reserved names. We’re trying to do better for new headers, but not everyone

has gotten the memo.

Update: Added special “internal double-underscore” rule.

