
1/17

January 2, 2023

Opinionated notes on the Windows.Data.Json
namespace

devblogs.microsoft.com/oldnewthing/20230102-00

Raymond Chen

The Windows Runtime provides types in the Windows.Data.Json namespace for dealing

with JSON. You can parse a JSON string into a JSON object model, and you can conversely

build a JSON object model and then convert it back to a string.

Here are some of my opinionated notes on these classes.

In order to be language-independent, the objects in the Windows.Data.Json namespace are

COM objects, rather than native objects in C++, C#, or whatever your language is. This

means that calls to the methods go through vtable dispatch, which the compiler cannot

optimize. This is a fundamental limitation of using a language-independent object model:

You cannot take advantage of language-specific optimizations.

There are a lot of interfaces, and calling a method on an interface different from the one you

have in your hand requires you do perform a QueryInterface to switch to the interface

that has the method.

// C++/WinRT
JsonObject jsonObject = ...;
jsonObject.Insert(key, value);

Insert is a method on IMap<String, IJsonValue> , so under the covers, there is an

interface query.

IMap<hstring, IJsonValue> map;
jsonObject.QueryInterface(IID_PPV_ARGS(map.put()));
map.Insert(key, value);
// map calls Release() on destruction

The above code could have avoided two COM calls (the Query Interface and the

Release) by using the bespoke Set Named Value method.

// C++/WinRT
JsonObject jsonObject = ...;
jsonObject.SetNamedValue(key, value);

https://devblogs.microsoft.com/oldnewthing/20230102-00/?p=107632

2/17

The SetNamedValue method is a method on IJsonObject , so you can call it without

having to change interfaces.

The JsonObject is awkward to use in an exception-free manner. In order to read a value if

it is present, most people write something like

if (jsonObject.HasKey(L"name")) {
 auto value = jsonObject.GetNamedValue(L"name");
 if (value.ValueType() == JsonValueType::String) {
 auto name = value.GetString();
 }
}

This is a double-query, which is made even more expensive when you realize that HasKey is

a method on IMap , so you also have an interface query/release hiding in there.

There’s a little-known overload of GetNamedValue that lets you specify what to return if the

value isn’t found:

auto value = jsonObject.GetNamedValue(L"name", nullptr);
if (value && value.ValueType() == JsonValueType::String) {
 auto name = value.GetString();
}

Since a present named value never has a nullptr value, we can be confident that if

nullptr is returned, then it means that the value was not present. (If the associated value

is a JSON null , it is returned as a non-null object whose value type is JsonValueType::

Null .)

There’s a corresponding little-known overload of GetNamedString that returns the string,

or a fallback value if the string is not present.

auto name = jsonObject.GetNamedString(L"name", L"untitled");

Choosing a fallback value for a missing string is trickier because there is no out-of-band value

that unmistakably indicates that the fallback was returned. (Recall that a nullptr HSTRING

represents the empty string.) The Get Named Boolean function suffers from the same

problem. For Get Named Value and Get Named Array , you can use nullptr , and for Get ‐

Named Number you can use NaN or one of the Infinity values, since those are not legal in

JSON.

There’s still a hidden trap in the Get Named ... functions with fallback: If the value is

present but is not the type you expect, then instead of returning the fallback, you get an E_

ILLEGAL_METHOD_CALL error, which usually projects as an exception. This is a problem if

you’re trying to be exception-free yet resilient to JSON that doesn’t match your schema. I

think the best you can do is Get Named Value and then check the Value Type before

converting.

https://devblogs.microsoft.com/oldnewthing/20160615-00/?p=93675

3/17

The JSON parsing and serialization methods are not configurable. Although there is a JSON

specification, there is wide disagreement over what is legal JSON when you get to the edges

of the specification. I’ve put a conformance report at the end of this article.

One thing that stands out from the conformance report is that the TryParse method can

throw an exception if the JSON string is legal but not representable as a JsonValue object,

or if an implementation limit is reached before the string can be fully validated. So even

though you think you’re avoiding exceptions by using JsonValue::TryParse , you aren’t

actually exception-free.

Anyway, back to lack of configurability: Since you cannot configure the input, you cannot

specify which variant of JSON you want to accept. And since you cannot configure the

output, you cannot ask for pretty-printing. This makes the Windows.Data.Json objects

unsuitable for generating JSON configuration files which are intended to be human-edited.

Note also that the Windows.Data.Json interconversion functions consume and produce

UTF-16LE strings. Most of the time, the original JSON data in UTF-8 format, and the final

output is also in UTF-8 format, so you have extra conversion steps on either side. Of course,

this isn’t a problem if your I/O functions already do that conversion for you. For example, if

you ask HttpClient for the string content, it returns the string in UTF16-LE format, ready

to be handed to JsonValue::TryParse .

With all of these caveats, it sure sounds like the Windows.Data.Json namespace is

terrible. Why would you ever want to use it?

Well, it’s already there.

If you already require Windows 8 or higher, then these classes are already present, and you

can consume them without having to add another dependency to your project. This is

important if you are concerned about disk footprint or download size, or just want to

minimize your dependencies. For example, I have a few internal tools in which the program

itself is 60KB, but the dependencies to do the Web authentication are 300KB.

Also, if parsing JSON is not a performance-critical operation in your program, you may

figure that the inefficiencies of a language-independent library (compared to a native-

language library) aren’t really a big deal. For example, if your program is parsing moderate-

sized JSON received from a Web server, any time savings by switching to a highly-optimized

JSON parser is almost certainly going to be overwhelmed by the network I/O.¹

Bonus chatter: The classes in the Windows.Data.Json namespace are provided by the

Windows Runtime as a convenience. No other parts of the API surface require it.² Any

methods that accept JSON do so in the form of a string, so you are welcome to use whatever

JSON library you like.

https://seriot.ch/projects/parsing_json.html

4/17

Appendix: Here’s the JSON conformance report, generated from Nicolas Seriot’s JSON test

suite.

Test Result Notes

i_number_double_huge_neg_exp Exception
WEB_E_INVALID_JSON_NUMBER

i_number_huge_exp Exception
WEB_E_INVALID_JSON_NUMBER

i_number_neg_int_huge_exp Exception
WEB_E_INVALID_JSON_NUMBER

i_number_pos_double_huge_exp Exception
WEB_E_INVALID_JSON_NUMBER

i_number_real_neg_overflow Exception
WEB_E_INVALID_JSON_NUMBER

i_number_real_pos_overflow Exception
WEB_E_INVALID_JSON_NUMBER

i_number_real_underflow Exception
WEB_E_INVALID_JSON_NUMBER

i_number_too_big_neg_int Accept Allowed

i_number_too_big_pos_int Accept Allowed

i_number_very_big_negative_int Accept Allowed

i_object_key_lone_2nd_surrogate Accept Allowed

i_string_1st_surrogate_but_2nd_missing Accept Allowed

i_string_1st_valid_surrogate_2nd_invalid Accept Allowed

i_string_incomplete_surrogates_escape_valid Accept Allowed

i_string_incomplete_surrogate_and_escape_valid Accept Allowed

i_string_incomplete_surrogate_pair Accept Allowed

i_string_invalid_lonely_surrogate Accept Allowed

i_string_invalid_surrogate Accept Allowed

i_string_invalid_utf-8 Accept Allowed

i_string_inverted_surrogates_U+1D11E Accept Allowed

https://github.com/nst/JSONTestSuite

5/17

i_string_iso_latin_1 Accept Allowed

i_string_lone_second_surrogate Accept Allowed

i_string_lone_utf8_continuation_byte Accept Allowed

i_string_not_in_unicode_range Accept Allowed

i_string_overlong_sequence_2_bytes Accept Allowed

i_string_overlong_sequence_6_bytes Accept Allowed

i_string_overlong_sequence_6_bytes_null Accept Allowed

i_string_truncated-utf-8 Accept Allowed

i_string_UTF-16LE_with_BOM Accept Allowed

i_string_UTF-8_invalid_sequence Accept Allowed

i_string_utf16BE_no_BOM Reject Allowed

i_string_utf16LE_no_BOM Reject Allowed

i_string_UTF8_surrogate_U+D800 Accept Allowed

i_structure_500_nested_arrays Accept Allowed

i_structure_UTF-8_BOM_empty_object Accept Allowed

n_array_1_true_without_comma Reject OK

n_array_a_invalid_utf8 Reject OK

n_array_colon_instead_of_comma Reject OK

n_array_comma_after_close Reject OK

n_array_comma_and_number Reject OK

n_array_double_comma Reject OK

n_array_double_extra_comma Reject OK

n_array_extra_close Reject OK

n_array_extra_comma Reject OK

n_array_incomplete Reject OK

n_array_incomplete_invalid_value Reject OK

6/17

n_array_inner_array_no_comma Reject OK

n_array_invalid_utf8 Reject OK

n_array_items_separated_by_semicolon Reject OK

n_array_just_comma Reject OK

n_array_just_minus Reject OK

n_array_missing_value Reject OK

n_array_newlines_unclosed Reject OK

n_array_number_and_comma Reject OK

n_array_number_and_several_commas Reject OK

n_array_spaces_vertical_tab_formfeed Reject OK

n_array_star_inside Reject OK

n_array_unclosed Reject OK

n_array_unclosed_trailing_comma Reject OK

n_array_unclosed_with_new_lines Reject OK

n_array_unclosed_with_object_inside Reject OK

n_incomplete_false Reject OK

n_incomplete_null Reject OK

n_incomplete_true Reject OK

n_multidigit_number_then_00 Reject OK

n_number_++ Reject OK

n_number_+1 Reject OK

n_number_+Inf Reject OK

n_number_-01 Reject OK

n_number_-1.0. Reject OK

n_number_-2. Reject OK

n_number_-NaN Reject OK

7/17

n_number_.-1 Reject OK

n_number_.2e-3 Reject OK

n_number_0.1.2 Reject OK

n_number_0.3e+ Reject OK

n_number_0.3e Reject OK

n_number_0.e1 Reject OK

n_number_0e+ Reject OK

n_number_0e Reject OK

n_number_0_capital_E+ Reject OK

n_number_0_capital_E Reject OK

n_number_1.0e+ Reject OK

n_number_1.0e- Reject OK

n_number_1.0e Reject OK

n_number_1eE2 Reject OK

n_number_1_000 Reject OK

n_number_2.e+3 Reject OK

n_number_2.e-3 Reject OK

n_number_2.e3 Reject OK

n_number_9.e+ Reject OK

n_number_expression Reject OK

n_number_hex_1_digit Reject OK

n_number_hex_2_digits Reject OK

n_number_Inf Reject OK

n_number_infinity Reject OK

n_number_invalid+- Reject OK

n_number_invalid-negative-real Reject OK

8/17

n_number_invalid-utf-8-in-bigger-int Reject OK

n_number_invalid-utf-8-in-exponent Reject OK

n_number_invalid-utf-8-in-int Reject OK

n_number_minus_infinity Reject OK

n_number_minus_sign_with_trailing_garbage Reject OK

n_number_minus_space_1 Reject OK

n_number_NaN Reject OK

n_number_neg_int_starting_with_zero Reject OK

n_number_neg_real_without_int_part Reject OK

n_number_neg_with_garbage_at_end Reject OK

n_number_real_garbage_after_e Reject OK

n_number_real_without_fractional_part Reject OK

n_number_real_with_invalid_utf8_after_e Reject OK

n_number_starting_with_dot Reject OK

n_number_U+FF11_fullwidth_digit_one Reject OK

n_number_with_alpha Reject OK

n_number_with_alpha_char Reject OK

n_number_with_leading_zero Reject OK

n_object_bad_value Reject OK

n_object_bracket_key Reject OK

n_object_comma_instead_of_colon Reject OK

n_object_double_colon Reject OK

n_object_emoji Reject OK

n_object_garbage_at_end Reject OK

n_object_key_with_single_quotes Reject OK

n_object_lone_continuation_byte_in_
 key_and_trailing_comma

Reject OK

9/17

n_object_missing_colon Reject OK

n_object_missing_key Reject OK

n_object_missing_semicolon Reject OK

n_object_missing_value Reject OK

n_object_no-colon Reject OK

n_object_non_string_key Reject OK

n_object_non_string_key_
 but_huge_number_instead

Reject OK

n_object_repeated_null_null Reject OK

n_object_several_trailing_commas Reject OK

n_object_single_quote Reject OK

n_object_trailing_comma Reject OK

n_object_trailing_comment Reject OK

n_object_trailing_comment_open Reject OK

n_object_trailing_comment_slash_open Reject OK

n_object_trailing_comment_slash_open_incomplete Reject OK

n_object_two_commas_in_a_row Reject OK

n_object_unquoted_key Reject OK

n_object_unterminated-value Reject OK

n_object_with_single_string Reject OK

n_object_with_trailing_garbage Reject OK

n_single_space Reject OK

n_string_1_surrogate_then_escape Reject OK

n_string_1_surrogate_then_escape_u Reject OK

n_string_1_surrogate_then_escape_u1 Reject OK

n_string_1_surrogate_then_escape_u1x Reject OK

n_string_accentuated_char_no_quotes Reject OK

10/17

n_string_backslash_00 Reject OK

n_string_escaped_backslash_bad Reject OK

n_string_escaped_ctrl_char_tab Reject OK

n_string_escaped_emoji Reject OK

n_string_escape_x Reject OK

n_string_incomplete_escape Reject OK

n_string_incomplete_escaped_character Reject OK

n_string_incomplete_surrogate Reject OK

n_string_incomplete_surrogate_escape_invalid Reject OK

n_string_invalid-utf-8-in-escape Reject OK

n_string_invalid_backslash_esc Reject OK

n_string_invalid_unicode_escape Reject OK

n_string_invalid_utf8_after_escape Reject OK

n_string_leading_uescaped_thinspace Reject OK

n_string_no_quotes_with_bad_escape Reject OK

n_string_single_doublequote Reject OK

n_string_single_quote Reject OK

n_string_single_string_no_double_quotes Reject OK

n_string_start_escape_unclosed Reject OK

n_string_unescaped_ctrl_char Reject OK

n_string_unescaped_newline Reject OK

n_string_unescaped_tab Reject OK

n_string_unicode_CapitalU Reject OK

n_string_with_trailing_garbage Reject OK

n_structure_100000_opening_arrays Exception
ERROR_IMPLEMENTATION_LIMIT

n_structure_angle_bracket_. Reject OK

11/17

n_structure_angle_bracket_null Reject OK

n_structure_array_trailing_garbage Reject OK

n_structure_array_with_extra_array_close Reject OK

n_structure_array_with_unclosed_string Reject OK

n_structure_ascii-unicode-identifier Reject OK

n_structure_capitalized_True Reject OK

n_structure_close_unopened_array Reject OK

n_structure_comma_instead_of_closing_brace Reject OK

n_structure_double_array Reject OK

n_structure_end_array Reject OK

n_structure_incomplete_UTF8_BOM Reject OK

n_structure_lone-invalid-utf-8 Reject OK

n_structure_lone-open-bracket Reject OK

n_structure_no_data Reject OK

n_structure_null-byte-outside-string Reject OK

n_structure_number_with_trailing_garbage Reject OK

n_structure_object_followed_by_closing_object Reject OK

n_structure_object_unclosed_no_value Reject OK

n_structure_object_with_comment Reject OK

n_structure_object_with_trailing_garbage Reject OK

n_structure_open_array_apostrophe Reject OK

n_structure_open_array_comma Reject OK

n_structure_open_array_object Exception
ERROR_IMPLEMENTATION_LIMIT

n_structure_open_array_open_object Reject OK

n_structure_open_array_open_string Reject OK

n_structure_open_array_string Reject OK

12/17

n_structure_open_object Reject OK

n_structure_open_object_close_array Reject OK

n_structure_open_object_comma Reject OK

n_structure_open_object_open_array Reject OK

n_structure_open_object_open_string Reject OK

n_structure_open_object_string_with_apostrophes Reject OK

n_structure_open_open Reject OK

n_structure_single_eacute Reject OK

n_structure_single_star Reject OK

n_structure_trailing_# Reject OK

n_structure_U+2060_word_joined Reject OK

n_structure_uescaped_LF_before_string Reject OK

n_structure_unclosed_array Reject OK

n_structure_unclosed_array_partial_null Reject OK

n_structure_unclosed_array_unfinished_false Reject OK

n_structure_unclosed_array_unfinished_true Reject OK

n_structure_unclosed_object Reject OK

n_structure_unicode-identifier Reject OK

n_structure_UTF8_BOM_no_data Reject OK

n_structure_whitespace_formfeed Reject OK

n_structure_whitespace_U+2060_word_joiner Reject OK

y_array_arraysWithSpaces Accept OK

y_array_empty-string Accept OK

y_array_empty Accept OK

y_array_ending_with_newline Accept OK

y_array_false Accept OK

13/17

y_array_heterogeneous Accept OK

y_array_null Accept OK

y_array_with_1_and_newline Accept OK

y_array_with_leading_space Accept OK

y_array_with_several_null Accept OK

y_array_with_trailing_space Accept OK

y_number Accept OK

y_number_0e+1 Accept OK

y_number_0e1 Accept OK

y_number_after_space Accept OK

y_number_double_close_to_zero Accept OK

y_number_int_with_exp Accept OK

y_number_minus_zero Accept OK

y_number_negative_int Accept OK

y_number_negative_one Accept OK

y_number_negative_zero Accept OK

y_number_real_capital_e Accept OK

y_number_real_capital_e_neg_exp Accept OK

y_number_real_capital_e_pos_exp Accept OK

y_number_real_exponent Accept OK

y_number_real_fraction_exponent Accept OK

y_number_real_neg_exp Accept OK

y_number_real_pos_exponent Accept OK

y_number_simple_int Accept OK

y_number_simple_real Accept OK

y_object Accept OK

14/17

y_object_basic Accept OK

y_object_duplicated_key Accept OK

y_object_duplicated_key_and_value Accept OK

y_object_empty Accept OK

y_object_empty_key Accept OK

y_object_escaped_null_in_key Accept OK

y_object_extreme_numbers Accept OK

y_object_long_strings Accept OK

y_object_simple Accept OK

y_object_string_unicode Accept OK

y_object_with_newlines Accept OK

y_string_1_2_3_bytes_UTF-8_sequences Accept OK

y_string_accepted_surrogate_pair Accept OK

y_string_accepted_surrogate_pairs Accept OK

y_string_allowed_escapes Accept OK

y_string_backslash_and_u_escaped_zero Accept OK

y_string_backslash_doublequotes Accept OK

y_string_comments Accept OK

y_string_double_escape_a Accept OK

y_string_double_escape_n Accept OK

y_string_escaped_control_character Accept OK

y_string_escaped_noncharacter Accept OK

y_string_in_array Accept OK

y_string_in_array_with_leading_space Accept OK

y_string_last_surrogates_1_and_2 Accept OK

y_string_nbsp_uescaped Accept OK

15/17

y_string_nonCharacterInUTF-8_U+10FFFF Accept OK

y_string_nonCharacterInUTF-8_U+FFFF Accept OK

y_string_null_escape Accept OK

y_string_one-byte-utf-8 Accept OK

y_string_pi Accept OK

y_string_reservedCharacterInUTF-8_U+1BFFF Accept OK

y_string_simple_ascii Accept OK

y_string_space Accept OK

y_string_surrogates_U+1D11E_
 MUSICAL_SYMBOL_G_CLEF

Accept OK

y_string_three-byte-utf-8 Accept OK

y_string_two-byte-utf-8 Accept OK

y_string_u+2028_line_sep Accept OK

y_string_u+2029_par_sep Accept OK

y_string_uEscape Accept OK

y_string_uescaped_newline Accept OK

y_string_unescaped_char_delete Accept OK

y_string_unicode Accept OK

y_string_unicodeEscapedBackslash Accept OK

y_string_unicode_2 Accept OK

y_string_unicode_escaped_double_quote Accept OK

y_string_unicode_U+10FFFE_nonchar Accept OK

y_string_unicode_U+1FFFE_nonchar Accept OK

y_string_unicode_U+200B_ZERO_WIDTH_SPACE Accept OK

y_string_unicode_U+2064_invisible_plus Accept OK

y_string_unicode_U+FDD0_nonchar Accept OK

y_string_unicode_U+FFFE_nonchar Accept OK

16/17

y_string_utf8 Accept OK

y_string_with_del_character Accept OK

y_structure_lonely_false Accept OK

y_structure_lonely_int Accept OK

y_structure_lonely_negative_real Accept OK

y_structure_lonely_null Accept OK

y_structure_lonely_string Accept OK

y_structure_lonely_true Accept OK

y_structure_string_empty Accept OK

y_structure_trailing_newline Accept OK

y_structure_true_in_array Accept OK

y_structure_whitespace_array Accept OK

number_-9223372036854775808 [-9.2233720368547758E+18]

number_-9223372036854775809 [-9.2233720368547758E+18]

number_1.0 [1]

number_1.000000000000000005 [1]

number_1000000000000000 [1E+15]

number_10000000000000000999 [1E+19]

number_1e-999 Exception
WEB_E_INVALID_JSON_NUMBER

number_1e6 [1000000]

number_9223372036854775807 [9.2233720368547758E+18]

number_9223372036854775808 [9.2233720368547758E+18]

object_key_nfc_nfd {"C3A9":"NFC","65CC81":"NFD"}

object_key_nfd_nfc {"65CC81":"NFD","C3A9":"NFC"}

object_same_key_different_values {"a":2}

object_same_key_same_value {"a":1}

17/17

object_same_key_unclear_values {"a":-0}

string_1_escaped_invalid_codepoint ["EFBFBD"]

string_1_invalid_codepoint N/A

string_2_escaped_invalid_codepoints ["EFBFBDEFBFBD"]

string_2_invalid_codepoints N/A

string_3_escaped_invalid_codepoints ["EFBFBDEFBFBDEFBFBD"]

string_3_invalid_codepoints N/A

string_with_escaped_NULL ["A\u0000B"]

For all of the “invalid codepoint” tests, the EFBFBD sequence is an encoded � U+FFFD

REPLACEMENT CHARACTER.

The “raw invalid codepoint” tests are marked N/A because the failure is in the conversion

from UTF-8 to UTF-16LE, which is something the caller does before calling JsonValue::

TryParse .

¹ Though not always.

² The Windows.System.Diagnostics.Diagnostic Invoker.Run Diagnostic Action Async

method does require that you use a Windows.Data.Json.JsonObject , but this was a

mistake, which was corrected by the addition of the Windows.System.Diagnostics.

Diagnostic Invoker.Run Diagnostic Action From String Async method, which accepts a

plain string. You can generate that string using whatever JSON library you choose.

Raymond Chen

Follow

https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/
https://docs.microsoft.com/en-us/uwp/api/Windows.System.Diagnostics.DiagnosticInvoker.RunDiagnosticActionAsync?view=winrt-22621
https://docs.microsoft.com/en-us/uwp/api/Windows.System.Diagnostics.DiagnosticInvoker.RunDiagnosticActionFromStringAsync?view=winrt-22621
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

