
1/4

November 30, 2022

I used FILE_FLAG_SEQUENTIAL_SCAN but it didn’t
seem to speed up my sequential scanning

devblogs.microsoft.com/oldnewthing/20221130-00

Raymond Chen

A customer explained that they intended to open a file and read the entire contents in either

a single read request or more likely a small number of large reads. Would the FILE_FLAG_

SEQUENTIAL_SCAN flag be helpful? Or to look at it another way, if the file is going to be

read in its entirety, are there situations where FILE_FLAG_SEQUENTIAL_SCAN would

make things worse?

The customer ran an experiment with a test program that opened a file and read its entire

contents, both in small chunks of 16KB and larger chunks of 100MB. They found that the

FILE_FLAG_SEQUENTIAL_SCAN flag didn’t have any significant effect upon the time it

took to read the file.

So what’s going on?

We saw some time ago that the FILE_FLAG_SEQUENTIAL_SCAN flag causes the cache manager

to alter its behavior in two ways: First, the amount of prefetch increases, and second, the

cache manager more aggressively evicts file data that sit behind the current file pointer.

The test program is not seeing much benefit from the FILE_FLAG_SEQUENTIAL_SCAN flag

because the test program isn’t spending any time processing the data it just read. As soon as

the read completes, it just turns around and issues the next read. This means that the

prefetch triggered by the FILE_FLAG_SEQUENTIAL_SCAN flag didn’t get much of a head

start. The “prefetch” was not very “pre”.

Let’s say that the I/O takes 20ms to complete. First, with no prefetching:

T = 10ms Previous read completes

T = 10ms + ϵ App issues normal read of 64KB (ETA 20ms)

T = 30ms + ϵ I/O completes and app resumes execution

https://devblogs.microsoft.com/oldnewthing/20221130-00/?p=107505
https://devblogs.microsoft.com/oldnewthing/20120120-00/?p=8493

2/4

Now with prefetching:

T = 10ms Previous read completes

T = 10ms Cache manager issues prefetch read of 64KB (ETA 20ms)

T = 10ms + ϵ App issues normal read of 64KB

(fits inside cache manager, so this is a nop)

T = 30ms I/O completes and app resumes execution

Net time savings: ϵ

On the other hand, if the program spends 10ms processing the data before issuing the next

read, then that gives the prefetch read a 10ms head-start.

No prefetching:

T = 10ms Previous read completes

T = 10ms to 20ms App processes data

T = 20ms App issues normal read of 64KB (ETA 20ms)

T = 40ms I/O completes and app resumes execution

And with prefetching:

T = 10ms Previous read completes

T = 10ms Cache manager issues prefetch read of 64KB (ETA 20ms)

T = 10ms to 20ms App processes data

T = 20ms App issues normal read of 64KB

(fits inside cache manager, so this is a nop)

T = 30ms I/O completes and app resumes execution

Net time savings: 10ms

In general, the amount of benefit from the FILE_FLAG_SEQUENTIAL_SCAN flag depends

on the speed of the device, how much time elapses between the completion of one read

request and the initiation of the next one, and whether the next read request fits entirely

inside the system-chosen prefetch.

3/4

The sequential scan flag didn’t hurt, but the test program was so fast that it didn’t have much

opportunity to help.

Let’s look at another case, where the app reads in 128KB chunks. First, with no prefetch:

T = 10ms Previous read completes

T = 10ms to 20ms App processes data

T = 20ms App issues normal read of 128KB (ETA 35ms)

T = 55ms I/O completes and app resumes execution

The cost of a 128KB read is slightly less than the cost of two 64KB reads due to the nature of

storage media: You don’t have the pay the latency of a second request. For rotational media,

that latency is in the form of a seek and/or rotational penalty. For solid state media, the

latency is in the form of issuing a new I/O request. For network resources, the latency is in

the network.

And here’s what we get with prefetch enabled:

T = 10ms Previous read completes

T = 10ms Cache manager issues prefetch read of 64KB (ETA 20ms)

T = 10ms to 20ms App processes data

T = 20ms App issues normal read of 128KB

(first 64KB fits inside cache manager)

(I/O #2 issued for second 64KB)

T = 30ms Prefetch I/O completes; I/O #2 starts (ETA 20ms)

T = 50ms Second I/O completes and app resumes execution

Net time savings: 5ms

In this case, the savings was only 5ms because the app’s read request did not fit entirely

inside the prefetch, so a normal fetch had to occur as well.

The FILE_FLAG_SEQUENTIAL_SCAN flag still helped, but it didn’t help as much as before.

If you know ahead of time that you are going to process the data sequentially, and you are

looking to squeeze out every last drop of performance, you can have your program explicitly

issue an asynchronous overlapped read of the next block as soon as the previous block

completes. It can then process the previous block, and then when it would normally have

4/4

issued a read for the next block, it instead just waits for the asynchronous overlapped read to

complete. In other words, the production program could manually do what the FILE_FLAG_

SEQUENTIAL_SCAN flag tries to do automatically, but with the advantage of clairvoyance:

It knows exactly how big the next read request will be, and it can issue a read of exactly that

size as soon as the previous read completes, so that the I/O system can get a head start on

fetching the data before the program needs it.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

