
1/3

November 21, 2022

What kind of caller diagnostic information can I get from
exceptions thrown by C++/WinRT and wil?

devblogs.microsoft.com/oldnewthing/20221121-00

Raymond Chen

C++/WinRT throws winrt::hresult_error to represent COM exceptions. The wil

framework throws ResultException for this purpose. How do they interact, and what

diagnostic information do they provide?

C++/WinRT hresult_error uses RoOriginateError to generate a stowed exception

which records, among other things, a stack trace for the current thread. This stack trace is

stored as part of the hresult_error in the form of a IRestrictedErrorInfo .

The wil framework by default does not use RoOriginateError , so there is no captured

stack trace. However, it does capture the file name and line number in the FailureInfo

that is stored in the ResultException . The FailureInfo also contains information to let

you correlate multiple failures and see which ones are manifestations of the same underlying

failure.

Here’s a little table of what we have so far:

 C++/WinRT wil

Thrown type hresult_
error

ResultException

Stack trace in thrown object Yes No

File/line number in thrown object No Yes

Recorded in wil error log No Yes

Things get more complicated if you include wil/result_originate.h : This tells wil to

call RoOriginateError before throwing the exception, thereby capturing a stack trace. The

stack trace is not explicitly saved in the exception object, however. It is stored in a thread-

local object that can be retrieved via GetErrorInfo() , and many parts of the system

https://devblogs.microsoft.com/oldnewthing/20221121-00/?p=107429
https://github.com/microsoft/wil

2/3

(including C++/WinRT) understand how to retrieve and preserve this extended information,

though determining whether any specific scenario preserves the extended information

requires investigation.

So now we have this:

 C++/WinRT wil

Thrown type hresult_
error

ResultException

Stack trace in thrown object Yes No

Stack trace in thread data Yes Requires result_originate.h

File/line number in thrown object No Yes

Recorded in wil error log No Yes

But wait, we’re not done yet. There’s another header file that affects how wil throws

exceptions, and that’s wil/cppwinrt.h . This header file enables various C++/WinRT+wil

interop features, including exception handling. Exceptions propagated by the C++/WinRT

library (for example, by check_hresult()) are filtered through wil, which logs them

through its own error logging channel. However, since the file and line number were

generated from the __FILE__ and __LINE__ preprocessor symbols captured by the

THROW_IF_FAILED macro, C++/WinRT cannot capture file and line number information

about the origination point, so you don’t get line number information in your wil trace log.

But you still get a stack trace in the hresult_error object.

Exceptions that are thrown explicitly via throw hresult_error() do not go through wil

filtering.

C++/WinRT wil

no wil/
cppwinrt.
h

with wil/cppwinrt.h

throw
hresult_
error

check_
hresult THROW_IF_FAILED

Thrown type hresult_
error

hresult_
error

hresult
_error

ResultException

Stack trace in
thrown object

Yes Yes Yes No

3/3

Stack trace in
thread data

Yes Yes Yes Requires
result_originate.h

File/line number
in thrown object

No No No Yes

Recorded in wil
error log

No No Yes Yes

But wait, we’re not finished yet. The wil framework alters its behavior if C++/CX is enabled.

If so, then it throws a Platform::Exception^ instead of a wil::ResultException .

The Platform::Exception^ captures a stack trace but not file/line number information.

C++/WinRT wil

no wil/
cppwinrt.
h

with wil/cppwinrt.h no C++/CX with C++/CX

throw
hresult_
error

check_
hresult

THROW_IF_
FAILED

THROW_IF_
FAILED

Thrown type hresult_
error

hresult_
error

hresult
_error

Result‐
Exception

Exception^

Stack trace
in thrown
object

Yes Yes Yes No Yes

Stack trace
in thread
data

Yes Yes Yes Requires
result_
originate.h

Yes

File/line
number in
thrown
object

No No No Yes No

Recorded in
wil error log

No No Yes Yes Yes

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

