
1/3

October 21, 2022

What happens if my C++ exception handler itself raises
an exception?

devblogs.microsoft.com/oldnewthing/20221021-00

Raymond Chen

Last time, we looked at what happens if your structured exception handler raises its own

structured exception. Today, we’ll look at the C++ version of the same question: What

happens if my C++ exception handler itself raises an exception?

Let’s look at this sample code fragment:

try

{

 Block1;

}

catch (Type1 ex1)

{

 Block2;

}

catch (Type2 const& ex2)

{

 Block3;

}

/* finally { destructors;
} */

If an exception is thrown out of Block1 , C++ looks for a matching catch block,¹ and

neither clause matches, then the search for a handler continues at the next outer scope. If no

scope handles the exception, then the process terminates via std::terminate .

The bodies of the catch blocks are not in scope of the try statement, so if an exception is

thrown by Block2 or Block3 , the search for a handler does not include the catch

(Type1 ex1) or catch (Type2 const& ex1) clauses.

There is no finally clause in C++ try / catch statements, but the equivalent

functionality is obtained by putting the desired cleanup code in destructors of objects

declared in Block1 . If control exits Block1 due to an exception, and one of the objects in

https://devblogs.microsoft.com/oldnewthing/20221021-00/?p=107307
https://devblogs.microsoft.com/oldnewthing/20221020-00/?p=107303

2/3

that block throws an exception in its destructor, then the rules of C++ are that the process

terminates immediately via std::terminate . This is different from Windows structured

exceptions and C# exceptions.

In the code sample above, I’ve put these destructors in a pseudo-“finally” clause, just so I will

have a place to annotate them.

Another difference from Windows structured exceptions is the case of an exception that

occurs while performing type matching: If a catch clause captures the exception object by

value, the exception object is constructed from the thrown object. And if that constructor

throws an exception, the C++ standard says that the process terminates via

std::terminate .² (This is also different from Windows structured exceptions.)

Here’s an annotated version of the above discussion:

try

{

 Block1;

}

Under consideration

catch (Type1 ex1)
std::terminate

{

 Block2;

}

Not considered

catch (Type2 const& ex2)
std::terminate

{

 Block3;

}

Not considered

/* finally { destructors;
} */

It’s complicated

The “It’s complicated” for the pseudo-finally clause applies because both behaviors are

possible, depending on why the destructors are running.

3/3

If Block1 is exiting normally, then exceptions that occur in destructors are catchable

by the try statement.

If Block1 is exiting due to an exception, then std::terminate is called.

Note that both cases can occur in the same try statement! Suppose the Block1 runs to

the final close-brace, and then it becomes time to run the destructors. Suppose there are two

objects inside the Block1 that require destruction. The first one to destruct throws an

exception. This is an exception thrown during normal exit of Block1 , so the exception is

catchable. But before we try to catch that exception, we need to run the second destructor. If

this second destructor also throws an exception, we are now in the case of a destructor

throwing an exception during exception handling, and this results in std::terminate .

¹ This search is done sequentially, so it will try to match Type1 first, and Type2 const&

second. As a result, reordering your catch clauses can result in changes in behavior if the

thrown object matches multiple catch clauses.

² In general, you should catch things by reference. This removes the possibility of exceptions

during the construction of the catch argument, and it also avoids slicing if the thrown

object is a derived class of the thing you’re catching.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

