
1/2

October 10, 2022

On the overloading of the address-of operator & in smart
pointer classes

devblogs.microsoft.com/oldnewthing/20221010-00

Raymond Chen

Many smart pointer classes overload the address-of operator & to give you access to the

inner raw pointer.

Unfortunately, they disagree on what happens to the object being managed by the smart

pointer before you get its raw address.

Library Existing contents

_com_ptr_t Released

ATL (CComPtr) Must be empty

(will assert in Debug)

MFC (IPTR) Released

WRL (ComPtr) Released

wil (com_ptr) Released

C++/WinRT (com_ptr) N/A

C++/WinRT avoids the confusion by simply not having an overloaded operator& at all!

Not having an overloaded operator& also makes it easier to take the address of the smart

pointer itself. The put() method Releases any managed COM pointer and then returns the

address of the raw pointer.

So let’s finish the table. Let’s say that sp is the name of a variable of the corresponding

smart pointer type.

Library Release Don’t release
Assumes
empty

https://devblogs.microsoft.com/oldnewthing/20221010-00/?p=107269

2/2

_com_ptr_t &sp &sp.GetInterfacePtr()

ATL
(CComPtr)

 &sp.p &sp

MFC
(IPTR)

&sp

WRL
(ComPtr)

&sp

p.ReleaseAndGetAddressOf()

p.GetAddressOf()

wil
(com_ptr)

&sp

sp.put()

sp.addressof()

C++/WinRT
(com_ptr)

sp.put()

Bonus chatter: The possibility of an overloaded operator& is one of those special cases

you tend to forget about when writing template library code.¹ In general, it’s not safe to use

the & operator to get the address of an object of unknown type, because the operator might

be overloaded. You have to use std::addressof .

¹ Hey, at least it’s not an overloaded comma operator. That thing is nasty.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20200904-00/?p=104172
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

