
1/3

October 6, 2022

The Import Address Table is now write-protected, and
what that means for rogue patching

devblogs.microsoft.com/oldnewthing/20221006-07

Raymond Chen

For a few years now, the Import Address Table (IAT) has been write-protected.

The import address table is the part of the Windows module (executable or dynamic link

library) which records the addresses of functions imported from other DLLs. For example, if

your program calls GetSystemInfo() , then the executable or DLL will have an entry in its

import table that says, “I would like to be able to call the function GetSystemInfo() from

kernel32.dll .” When the module is loaded, the system goes and finds that function,

obtains its address, and stores it in a table known as the Import Address Table (IAT). When

the module needs to call the GetSystemInfo() function, it does so by fetching the value

from the Import Address Table and calling it.

The Import Address Table is therefore a table filled with function pointers. This makes it an

attractive target for attackers looking to achieve remote code injection, since they can

overwrite the entry in the Import Address Table (using a write-what-where vulnerability) and

redirect a function call to a location of their choosing.

As a defense in depth measure, the Import Address Table is now write-protected. Once the

loader has obtained all the function pointers, it write-protects the table to make it harder for

an attacker to overwrite it.

This write protection isn’t permanent, however. For delay-loaded imports, the Import

Address Table holds a pointer to a stub function, so that the first time the module tries to call

the imported function, the call is sent to the stub. That stub function looks up the real

function and then updates the Import Address Table entry to point to the real function. To

perform this update, the delay-load library temporarily makes the Import Address Table

read-write, updates the function pointers, and then restores it to read-only status. So there

are still small windows of opportunity in which the Import Address Table is unprotected, but

the hope is that these windows are quite small and provide enough of an obstacle that

attackers won’t consider it a fruitful avenue of attack.

https://devblogs.microsoft.com/oldnewthing/20221006-07/?p=107257

2/3

This security mitigation was in place in internal builds, and everything looked pretty good.

Then the changes rolled out to the Windows Insider Program, and there were many reports

of users not being able to sign into their account.

What’s going on?

The users that couldn’t sign in had installed Windows “enhancement tools” that inject

themselves into Explorer and rewrite various parts of the operating system in order to

implement their various enhancements. One of them accomplished its nefarious task by

patching the Import Address Table in order to detour functions that Explorer used, so it

could substitute its own alternative. And that enhancement tool assumed that the Import

Address Table was permanently read-write.

What was happening is that users would sign in, Explorer would start up, and then the

enhancement tool would inject itself into Explorer and try to patch the Import Address Table.

This patch would run afoul of the fact that the Import Address Table is now read-only, so

they would crash, taking Explorer down with it.

No Explorer means no desktop, no taskbar, no Start menu.

But we didn’t abandon this additional security measure to accommodate these nefarious

programs. Users who have such enhancement tools generally understand that the programs

are doing sketchy things. When these types of programs are discovered, we put them on the

list of apps that are fundamentally incompatible, and what happens next depends on what

kind of update introduces the incompatibility.

If the incompatibility is in a major update of Windows, then the program is placed in the

compatibility report for that update, and when users attempt to upgrade, they will be warned

of the incompatibility. If it’s a free program, then the upgrade installer advises the user that

the program will be uninstalled as part of the upgrade. If it’s a paid program, then the

upgrade installer will not force-uninstall the program and require users to do it themselves.

User who still miss the features of that enhancement software can go and reinstall it. And

then Explorer will crash at logon. But this time, the blame is properly assigned to “the thing

you installed most recently”, which is the enhancement software.

Basically, the upgrade process changed the order of operations. What used to be

Working system

↓ Install Program X

Working system

3/3

↓ Upgrade Windows

Broken system ⮭ blame this guy

is now

Working system

↓ Install Program X

Working system

↓ Uninstall Program X

Working system

↓ Upgrade Windows

Working system

↓ Install Program X

Broken system ⮭ blame this guy

On the other hand, things are not so easy if the incompatibility is with an update that comes

as part of Patch Tuesday. The patch updater has no opportunity to ask the user questions or

gain confirmation. That’s by design, because it would be bad to delay the install of a security

update. Those things need to get installed as soon as practical. In this case, Windows also has

to tweak itself so that the incompatible “system enhancement” program fails in a more

benign way. The enhancement program doesn’t have to keep working, but it can’t crash the

system either. This can be done by making some sort of harmless change that nevertheless

throws off the enhancement program’s patch logic so that it gives up instead of applying a

bad patch.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

