
1/6

October 5, 2022

The gotcha of the C++ temporaries that don’t destruct as
eagerly as you thought

devblogs.microsoft.com/oldnewthing/20221005-00

Raymond Chen

Forgetting to take a lock when updating variables is a common mistake. One way to make the

mistake harder to make is to force the access to occur through some mechanism that proves

that you possess the lock. Maybe something like this:

https://devblogs.microsoft.com/oldnewthing/20221005-00/?p=107248

2/6

template<typename> struct LockableData;

namespace std

{

 template<typename Data>

 struct default_delete<LockableData<Data>>

 {

 void operator()(LockableData<Data>* p)

 const noexcept { p->m.unlock(); }

 };

}

template<typename Lockable>

struct [[nodiscard]] LockedData

{

 LockedData(Lockable* l = nullptr) : l(l)

 { if (l) l->m.lock(); }

 auto operator->() const noexcept

 { return std::addressof(l->data); }

private:

 std::unique_ptr<Lockable> l;

};

template<typename Data>

struct LockableData

{

 LockedData<LockableData> Lock() { return this; }

private:

 friend struct LockedData<LockableData>;

 friend struct std::default_delete<LockableData>;

 std::mutex m;

 Data data;

};

The idea here is that you declare some structure that holds the data you want to be protected

by a common mutex. You can then wrap that data inside a LockableData . To access the

data, you call Lock() to acquire the mutex and receive a LockedData object. You then

access the structure through the LockedData object, and when the LockedData object

destructs, it releases the mutex.

Using a std::unique_ptr with a custom deleter allows the LockedData object to be

movable with the natural semantics. And marking the LockedData as [[nodiscard]]

makes sure that you save the return value of Lock() ; otherwise, it destructs immediately,

and your lock accomplished nothing.

Here’s an example usage:

3/6

struct WidgetInfo

{

 std::string name;

 int times_toggled = 0;

};

class Widget

{

 LockableData<WidgetInfo> info;

public:

 void SetName(std::string name)

 {

 auto lock = info.Lock();

 lock->name = name;

 lock->times_toggled = 0;

 }

 std::string GetName()

 {

 auto lock = info.Lock();

 return lock->name;

 }

 void Toggle()

 {

 { // scope the lock

 auto lock = info.Lock();

 lock->times_toggled++;

 }

 FlipSwitchesRandomly();

 }

};

One thing that’s slightly annoying here is that in many cases, we are locking around the

access to a single member. One way to avoid having to create tiny scopes is to allow the ->

operator to be used directly from the LockableData , so that it does a lock-access-unlock.

4/6

template<typename Data>

struct LockableData

{

 LockedData<LockableData> Lock() { return this; }

 auto operator->() { return Lock(); } // NEW!

private:

 friend struct LockedData<LockableData>;

 friend struct std::default_delete<LockableData>;

 std::mutex m;

 Data data;

};

class Widget

{

 LockableData<WidgetInfo> info;

public:

 void SetName(std::string name)

 {

 auto lock = info.Lock();

 lock->name = name;

 lock->times_toggled = 0;

 }

 std::string GetName()

 {

 return info->name; // lock-read-unlock

 }

 void Toggle()

 {

 info->times_toggled++; // lock-modify-unlock

 FlipSwitchesRandomly();

 }

};

This convenience -> operator makes single-member updates much easier, but it also comes

with a catch:

 void Toggle()

 {

 info->times_toggled = std::max(info->times_toggled, 10);

 FlipSwitchesRandomly();

 }

Do you see the problem here?

I mean, yes, there’s a race condition here if two threads toggle at the same time, but that’s not

the problem I’m referring to. That would “merely” result in incorrect accounting.

5/6

The real problem is the double lock.

The -> operator returns a temporary LockedData object, and the rules for temporary

objects in C++ are that they are destructed at the end of the full expression.

Therefore, the evaluation of the revised code goes like this:

 // Evaluate right hand side

 LockedData<WidgetInfo> lock1 = info.operator->();

 int rhs = std::max(lock1->times_toggled, 10);

 // Evaluate left hand side

 LockedData<WidgetInfo> lock2 = info.operator->();

 // Perform the assignment

 lock2->times_toggled = rhs;

 // Destruct temporaries in reverse order of construction

 destruct lock2;

 destruct rhs;

 destruct lock1;

Do you see the problem yet?

Since the locks are temporaries, their lifetime extends to the end of the full expression. We’ve

seen this problem before.¹ This means that the two info->times_toggled operations each

create a separate LockedData object, and each one acquires the mutex.

The result is that we acquire the mutex lock twice, which is not allowed. In practice, this

results in a deadlock and forces you to issue a public apology.

The convenience -> was a bit too convenient: If an object o is a smart pointer, people are

accustomed to o->Something doing some work with o in order to produce the pointer

that will be dereferenced in order to access the Something . What they are not accustomed

to is the presence of work that occurs after the dereference to clean up.

In other words, people tend to expect that it’s okay to call the -> operator many times on

the same object without consequence.

So take away that dangerous operator. People can still get the one-liner convenience, though.

They just have to lock explicitly:

 std::string GetName()

 {

 return info.Lock()->name;

 }

https://devblogs.microsoft.com/oldnewthing/20190429-00/?p=102456
https://twitter.com/windowsinsider/status/1433615378362503177

6/6

Having to write out the word “Lock” also makes it easier to spot that you’re locking twice

within the same expression.

 void Toggle()

 {

 // suspicious double-lock - more likely to be spotted in code review

 info.Lock()->times_toggled = std::max(info.Lock()->times_toggled, 10);

 FlipSwitchesRandomly();

 }

¹ It looks like C++23 has adopted the idea of the out_ptr temporary object which resets

the pointer on destruction, in spite of the footguns that arise in certain usage patterns.

Raymond Chen

Follow

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p1132r8.html#design-footguns
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

