
1/3

September 30, 2022

Debugging coroutine handles: Looking for the source of
a one-byte memory corruption

devblogs.microsoft.com/oldnewthing/20220930-00

Raymond Chen

A team was chasing a one-byte use-after-free memory corruption bug. These bugs are really

frustrating to chase down because the memory corruption typically doesn’t trigger an

immediate crash, but rather results in a delayed crash, which means that the culprit has done

the damage and run away long before the problem is detected.

We join the debugging session already in progress. We have determined that the corruption

is to a memory block that previously contained a coroutine frame at offset 0xc0 .

The state machine of a coroutine exists in the _ResumeCoro$2 function, so we can start

there:

contoso!DoStuffLater$_ResumeCoro$2:

 mov r11,rsp

 ... stack frame nonsense ...

 mov rsi,rcx // rsi = coroutine frame pointer

 mov [rsp+28h],rcx

 movzx eax,word ptr [rcx+8] // eax = coroutine state

 mov [rsp+20h],ax

 inc ax // artificially add 1

 cmp ax,8

 ja contoso!DoStuffLater$_ResumeCoro$2+0x3e5

 ja 00007ffc`e777a5b5 // invalid index, die (jump to int 3)

 movsx rax,ax

 lea rdx,[contoso!__ImageBase]

 mov ecx,[rdx+rax*4+1BA5E0h] // look up jump table RVA

 add rcx,rdx // convert to absolute address

 jmp rcx // jump there

contoso!DoStuffLater$_ResumeCoro$2+0x3e5:

 int 3

https://devblogs.microsoft.com/oldnewthing/20220930-00/?p=107233

2/3

We see from the disassembly that the jump table starts at relative offset 0x1ba5e0 . We

won’t dig into the jump table yet; let’s see if we can find the corruption point, which is a

single-byte corruption at offset 0xc0 from the start of the coroutine frame. Maybe we’ll be

lucky and the access is directly into the frame.

0:026> #c0h contoso!DoStuffLater$_ResumeCoro$2

contoso!DoStuffLater$_ResumeCoro$2+0x136:

 mov [rsi+0C0h],al

Oh my goodness, we found a single-byte write at offset 0xc0 in the coroutine frame! Let’s

see who is doing it.

 mov eax,6

 mov [rsi+8],ax

 mov rdx,rsi

 mov rcx,rbx

 call
contoso!winrt::impl::notify_awaiter<`winrt::resume_foreground'::`2'::awaitable>::

await_suspend<std::experimental::coroutine_traits<winrt::fire_and_forget>::promise_typ

 mov [rsi+0C0h],al // WRITE HAPPENS HERE

The first two instructions set the coroutine state to 6, which happens as part of coroutine

suspension.

The second group of instructions call the await_suspend for a resume_foreground

awaiter. This is in code that is moving forward to state 6, and we know that the Microsoft

compiler records coroutine states as even numbers starting at 2 (for the initial state), and

then increases by two for each suspension point. Therefore, moving to state 6 means

suspending for the second time.

winrt::fire_and_forget DoStuffLater()

{

 co_await winrt::resume_after(100ms);

 co_await winrt::resume_foreground(GetDispatcherQueue());

 DoStuff();

}

Okay, good, that second suspension theory lines up with the code: The second suspension is a

call to resume_foreground , and the code showed that we were calling

resume_foreground .

And we see the bug: The code is storing the result of await_suspend into the coroutine

frame. This is something I called out in my C++ coroutines: Getting started with awaitable

objects article:

https://devblogs.microsoft.com/oldnewthing/20211007-00/?p=105777
https://devblogs.microsoft.com/oldnewthing/20191209-00/?p=103195

3/3

Therefore, it is important that your awaiter not use its this pointer once it has arranged for
the handle to be invoked somehow, because the this pointer may no longer be valid.

In this case, not only did the awaiter get destructed, the entire coroutine frame was

destructed!

The compiler team confirmed that this is a known code-generation bug, fixed in versions

16.11 and 17.0.

If you are stuck on 16.10 or older, you will have to work around the problem. From my

investigation, it seems that the code generation problem occurs when you have an

await_suspend that returns bool . In C++/WinRT, there are only four places where this

happens:

resume_foreground(Windows::System::CoreDispatcher)

resume_foreground(Microsoft::System::CoreDispatcher)

deferrable_event_args.wait_for_deferrals()

final_suspend

In the first two cases, you can work around the problem by switching to the

wil::resume_foreground function, which addresses this and other design issues with the

original winrt::resume_foreground function.

If you’d rather not pull in another library, and you don’t want to upgrade your compiler, you

can work around the problem by using an explicit continuation-passing model:

winrt::fire_and_forget DoStuffLater()

{

 co_await winrt::resume_after(100ms);

 GetDispatcherQueue().EnqueueAsync([=]()

 {

 DoStuffLater();

 });

}

In the last case (final_suspend), my exploration suggests that the code generation

problem does not occur in that case, so we’re okay there.

But upgrade your compiler if you can.

Raymond Chen

Follow

https://devblogs.microsoft.com/cppblog/cpp20-coroutine-improvements-in-visual-studio-2019-version-16-11/
https://github.com/microsoft/wil/blob/492c01bb535daadf719d4445d6107aadf1e60812/include/wil/cppwinrt.h#L481
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

