
1/5

September 29, 2022

I did that merge-as-cherry-pick thing, but my change still
didn’t merge correctly

devblogs.microsoft.com/oldnewthing/20220929-00

Raymond Chen

A colleague used the patch-branch technique of merging a single commit to another branch,

but found that the subsequent merge of the complete branch produced the wrong results.

They asked me to investigate what went wrong.

After untangling the changes to the main and feature branches, I was able to reconstruct a

simplified version of what happened.

We start with this:

    apple   apple    

    M1 M2   main

apple          

A            

           

    F1 F2   feature

    apple   berry    

They created a feature branch and did some work: Commit F1 didn’t affect the file, but

commit F2 changed “apple” to “berry”.

They then realized that this “berry” change was something they wanted in the main branch

early, so they could do some preliminary integration work before the rest of the feature work

was done. They created a second berries-only branch that contained just the “berry” change

and merged it into both the main branch (which delivers the payload to the main branch) and

https://devblogs.microsoft.com/oldnewthing/20220929-00/?p=107229
https://devblogs.microsoft.com/oldnewthing/20180323-01/?p=98325
http://michaelborys.com/capncrunch-oops-all-berries/


2/5

into the feature branch (which has no net code effect, but records that the change as have

already been incorporated so it doesn’t get counted as payload when the feature branch

merges back up to the main branch).

    apple   apple   berry

    M1 M2 M3   main

apple     berry

A P       patch

       

    F1 F2 F3   feature

    apple   berry   berry

The integration validation didn’t turn out so great, so they reverted the change in both the

main and feature branches.

    apple   apple   berry   apple

    M1 M2 M3 M4   main

apple     berry    

A P           patch

           

    F1 F2 F3 F4   feature

    apple   berry   berry   apple

The team continued working on the feature, and this time they felt that they got the “berry”

thing right, so they made a commit in their feature branch to change “apple” back to “berry”,

this time with feeling.

    apple   apple   berry   apple

    M1 M2 M3 M4       main

apple     berry        

A P               patch

https://en.wikipedia.org/wiki/Once_More,_with_Feeling!


3/5

               

    F1 F2 F3 F4 F5   feature

    apple   berry   berry   apple   berry

All the tests were passing, so they got the green light to merge the feature into the main

branch. And that’s where something strange happened.

    apple   apple   berry   apple       apple

    M1 M2 M3 M4 M5   main

apple     berry          

A P                 patch

                 

    F1 F2 F3 F4 F5       feature

    apple   berry   berry   apple   berry    

The result of the merge into the main branch didn’t carry the final “berry” change. The file

remained “apple” in the main branch.

As a result, the main branch was broken.

What happened?

The merge of the “only berries” branch into both the main and feature branches established

“berry” as the baseline for the next merge. In the main branch, “berry” changed to “apple”. In

the feature branch, “berry” underwent some turmoil but emerged unchanged. The three-way

merge algorithm therefore saw that the main branch changed “berry” to “apple”, and the

feature branch made no (net) change. Therefore, the result of the merge is “apple”. (apple + 0

= apple).

The fatal error was the dual revert.

These reverts were independent and therefore git did not consider them to be related to each

other. But really, you wanted them to be considered the same revert, so that the feature

branch could un-revert it.

Basically, once you merged the “only berries” branch, the diagram (from the apple/berry’s

point of view) simplified to this:



4/5

    berry   apple       apple

    M3 M4 M5   main

berry          

P                  

               

    F3 F4 F5       feature

    berry   apple   berry    

It’s as if the feature branch was created from the “only-berries” branch, and the main branch

continued by reverting “berries” back to “apple”, whereas the feature branch underwent some

soul-searching and ultimately made no change to “berries”. Naturally, the result of this merge

is that “berries” is reverted to “apple”.

What my colleague should have done was to perform the revert in a separate branch, possibly

just extending the “only-berries” branch so it is now a “changed-my-mind-about-berries”

branch. Merge that branch into both the main and feature branches, thereby advancing the

baseline forward to the shared revert.

    apple   apple   berry   apple       berry

    M1 M2 M3 M4 M5   main

apple     berry apple      

A P P2             patch

               

    F1 F2 F3 F4 F5       feature

    apple   berry   berry   apple   berry    

By making the revert on the patch branch and merging it into the main and feature branches

(instead of reverting separately on the main and feature branches), git now understands that

the revert is part of the shared history of the two branches. This time, when the final merge

occurs, git sees that the main branch made no changes, and the feature branch did an

unrevert, so the result of the merge is the unrevert, and “berry” makes it into the main

branch.

Raymond Chen

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing


5/5

Follow








