
1/3

September 16, 2022

Serializing asynchronous operations in C++/WinRT,
gotchas and final assembly

devblogs.microsoft.com/oldnewthing/20220916-00

Raymond Chen

Last time, we came up with a way of making asynchronous operations run in sequence, but I

noted that there were some gotchas we need to work through.

One gotcha is cancellation.

In the C++/WinRT implementation of Windows Runtime asynchronous operations,

cancellation of an asynchronous operation trigger the completion callback immediately,

without waiting for the coroutine to acknowledge the cancellation. If we had used the

Completed callback to detect the completion of the coroutine, we would have started

running the next coroutine before the previous one cleaned up from its cancellation.

Good thing we aren’t doing that. We trigger the next coroutine at the destruction of the

chained_task_completer , which we arranged to destruct last, so everything else in the

coroutine has already destructed. (Well, the parameters haven’t been destructed yet, but they

were all references, so there was nothing to destruct.)

The other thing to worry about is coroutine destruction. That’s where you take a suspended

coroutine and call destroy on it. This basically rips the rug out of the coroutine and

destructs everything in it without letting any of the coroutine body run anything. If that

happens to our coroutine while suspended at the co_await lazy_start , then the

chained_task_completer will destruct and start running the next coroutine

prematurely.

Fortunately, C++/WinRT coroutines are never abandoned. They always run to completion

(possibly by throwing an exception). So at least for C++/WinRT coroutines, we don’t have to

worry about this.¹

What if the task_sequencer is destructed while there are still pending coroutines?

When the task_sequencer destructs, the m_latest shared pointer destructs, which

means that the last node in the chain now has only one strong reference, namely the strong

reference from the last coroutine in the chain:

https://devblogs.microsoft.com/oldnewthing/20220916-00/?p=107191
https://devblogs.microsoft.com/oldnewthing/20220915-00/?p=107182
https://devblogs.microsoft.com/oldnewthing/20200724-00/?p=104005

2/3

coroutine
chained_task

→ current → next

 ↙︎

 coroutine chained_task

 current → next

 ↙︎

 coroutine chained_task

 current → next → nullptr

 ×
↑

m_latest

As the coroutines complete, the nodes come off the head of the linked list, and when the last

one completes, the last chained_task destructs. Everything is cleaned up.

Now we can take our task_sequencer for a spin.

3/3

task_sequencer sequence;

winrt::Windows::Foundation::IAsyncOperation<winrt::hstring>

MessageAfterDelayAsync(

 winrt::hstring message,

 winrt::Windows::Foundation::TimeSpan delay)

{

 co_await winrt::resume_after(delay);

 std::wcout << message.c_str() << std::endl;

 co_return message + L" done";

}

auto AddMessageAfterDelayAsync(

 winrt::hstring message,

 winrt::Windows::Foundation::TimeSpan delay)

{

 return sequence.QueueTaskAsync(

 [=] { return MessageAfterDelayAsync(message, delay); });

}

void do_in_sequence()

{

 auto first = AddMessageAfterDelayAsync(L"first", 1s);

 auto second = AddMessageAfterDelayAsync(L"second", 1s);

 auto third = AddMessageAfterDelayAsync(L"third", 1s);

 // Cancel the second one, just for fun.

 second.Cancel();

 // wait for the third one.

 auto third_message = third.get();

 // print the results

 std::wcout << first.get().c_str() << std::endl;

 std::wcout << third_message.c_str() << std::endl;

}

¹ In general, abandonment of a coroutine via premature destroy() is not something most

coroutine libraries deal with, so at least we’re in good company.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

