
1/2

September 14, 2022

Creating a lazy-start C++/WinRT coroutine from an eager-
start one, part 2

devblogs.microsoft.com/oldnewthing/20220914-00

Raymond Chen

Last time, we created a lazy-start C++/WinRT coroutine wrapper around a standard

IAsyncAction or IAsyncOperation , which is an eager-start coroutine. We did it by

sharing a kernel handle with the coroutine and having the coroutine wait for the handle to be

signaled before beginning its work.

But we can do better, if we are willing to dig down a little bit.

The trick here is to have the coroutine suspend itself, and then manually resume it.

template<typename Make>

auto MakeLazy(Make make) -> decltype(make())

{

 struct suspender

 {

 void resume() { handle(); }

 bool await_ready() { return false; }

 void await_suspend(std::experimental::coroutine_handle<> h)

 { handle = h; }

 void await_resume() { }

 private:

 std::experimental::coroutine_handle<> handle;

 };

 suspender suspend;

 auto currentTask = [](auto start, auto make, auto& suspend)

 -> decltype(make()) {

 co_await suspend;

 co_return co_await make();

 }(std::move(start), std::move(make), suspend);

 // Resume the coroutine

 suspender.resume();

 return currentTask;

}

https://devblogs.microsoft.com/oldnewthing/20220914-00/?p=107175

2/2

The idea here is to create a custom awaitable object which saves the coroutine handle, which

can be resumed by an explicit call to the resume() method.

Recall that what makes a C++ coroutine lazy-start is that it chooses to make its

initial_suspend method return a suspending awaiter. IAsyncAction and

IAsyncOperation are eager-start, so the C++/WinRT libray’s initial_suspend is

suspend_never , thereby allowing the coroutine to begin executing its body. By adding an

immediate suspension point as the first thing in the body, we are sort of retroactively

changing that suspend_never into a suspension. If you look at one of the rewrite steps in

the coroutine transformation, you’ll see that the coroutine function body comes immediately

after the initial_suspend , so our immediate suspension is functionally equivalent to

rewriting the initial_suspend .

We will expand upon this idea next time, when we work on serializing asynchronous

operations in C++/WinRT.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20210331-00/?p=105028
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

