The case of the APC that never arrives

=. devblogs.microsoft.com/oldnewthing/20220909-00

September 9, 2022

E ]

Raymond Chen
A customer encountered found that sometimes, their application hung in its clean up code.
Here’s a simplified version.
bool ShuttingDown = false;

void MainThread()

{
DWORD id;
auto hThread = CreateThread(nullptr, 0, WorkerThread,
nullptr, 0, &id); // succeeds
BlahBlahBlah(); // do useful work
// Time to clean up. Post an APC to the worker thread
// to tell it that it's time to go home.
QueueUserAPC(WakeWorker, hThread, 0); // succeeds
WaitForSingleObject(hThread, INFINITE); // hangs
CloseHandle(hThread);
}
void CALLBACK WakeWorker (ULONG_PTR)
{
ShuttingbDown = true;
}
DWORD CALLBACK WorkerThread(void*)
{
// Do work until shut down.
do
{
// All work is posted via APCs.
SleepEx(INFINITE, TRUE);
} while (!'ShuttingDown);
return 0;
}

1/4


https://devblogs.microsoft.com/oldnewthing/20220909-00/?p=107151

The idea is that the program has a worker thread to, y’know, do some work. All of the work
items are posted via QueueUserAPC , and the worker thread simply calls SleepEx
alertably, over and over again. Each call to SleepEx sleeps the thread until an APC is
queued, at which point it returns (because the bAlertable parameteris TRUE ).

One way of looking at this design is that it’s a sneaky way of making the operating system
manage your work queue for you. Another way of looking at it is as a single-threaded I/O
completion port.

Call it what you will.

Anyway, the problem is that the worker thread is stuck in SleepEx , as if it never got the
WakeWorker APC that tells it to exit.

But is that really the problem?

The customer was able to get some full memory dumps of systems that got into this state, and
the telling detail is that the ShuttingDown variable was setto true . So it wasn’t that the

wWakeWorker APC never arrived. It totally did arrive and set Shuttingbown to true . Yet
somehow that didn’t wake up the SleepEx .

One of my colleagues offered the possibility that when the code entered the SleepEx loop,
the wakeWorker APC had already run. If that’s the case, then the SleepEx is going to wait
for an APC that has already arrived.

I was able to confirm with a test program that this was indeed a possibility.

2/4



DWORD apc = 0;

void CALLBACK WakeWorker (ULONG_PTR)

{
apc = GetCurrentThreadId();
}
DWORD CALLBACK WorkerThread(void*)
{
if (apc == GetCurrentThreadId()) DebugBreak();
return 0,
}
int __cdecl main()
{
DWORD id;
while (true)
{
apc = 0;
auto h = CreateThread(nullptr, O, WorkerThread, nullptr, 0, &id);
QueueUserAPC(WakewWorker, h, 0);
WaitForSingleObject(h, INFINITE);
CloseHandle(h);
Sleep(10);
}
// notreached
}

This program creates a thread and immediately queues an APC to it. The thread procedure
checks if the APC already ran on the same thread, and if so, it breaks into the debugger.

If you run this program, it breaks immediately. If you set a breakpoint on the wakeWorker
function, you’ll see that it does indeed run on the thread before the WorkerThread function
starts.

From the stack trace on that breakpoint, it appears that the kernel processes APCs during the
early phases of thread creation, so if you had any queued APCs, they will get processed before
the thread procedure even starts.

So that’s the bug: The Shuttingbown flag was already set by the time the thread procedure
started, but the code assumes that it can only be set by an APC that is processed by the
SleepEx .

The fix is simple: Change the loop froma do...while toa while ,so that the testis at the
top of the loop instead of at the bottom.

3/4



DWORD CALLBACK WorkerThread(void*)

' // Do work until shut down.
while (!ShuttingDown)
{
// All work is posted via APCs.
SleepEx(INFINITE, TRUE);
}
return 0;
}

The case where this happens is if the BlahBlahBlah() function returns very quickly,
allowing the QueueUserAPC to win the race against the wWorkerThread .

Raymond Chen

Follow

4/4


https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

