
1/3

September 2, 2022

The case of the recursively-acquired non-recursive lock,
and how to avoid the unintentional reentrancy

devblogs.microsoft.com/oldnewthing/20220902-00

Raymond Chen

A customer encountered a deadlock due to unexpected reentrancy, and they were looking for

guidance in fixing it.

Here’s the code in question:

struct WidgetTracker : IWidgetChangeNotificationSink

{

 /* other stuff not relevant here */

 /// IWidgetChangeNotificationSink

 STDMETHODIMP OnCurrentWidgetChanged();

private:

 WRL::ComPtr<IWidget> m_currentWidget;

 std::mutex m_mutex;

};

HRESULT WidgetTracker::OnCurrentWidgetChanged()

{

 auto guard = std::lock_guard(m_mutex);

 RETURN_IF_FAILED(GetCurrentWidget(&m_currentWidget));

 return S_OK;

}

The idea here is that the WidgetTracker listens for notifications that the current widget

has changed, and when it receives that notification, it updates its local cache to hold the new

current widget.

The hang occurred with this stack:

https://devblogs.microsoft.com/oldnewthing/20220902-00/?p=107103

2/3

ntdll!ZwWaitForAlertByThreadId

ntdll!RtlAcquireSRWLockExclusive

contoso!WidgetTracker::OnCurrentWidgetChanged

rpcrt4!Invoke

rpcrt4!Ndr64StubWorker

rpcrt4!NdrStubCall3

combase!CStdStubBuffer_Invoke

combase!InvokeStubWithExceptionPolicyAndTracing::__l6::<lambda_...>::operator()

combase!ObjectMethodExceptionHandlingAction<<lambda_...> >

combase!InvokeStubWithExceptionPolicyAndTracing

combase!DefaultStubInvoke

combase!SyncServerCall::StubInvoke

combase!StubInvoke

combase!ServerCall::ContextInvoke

combase!DefaultInvokeInApartment

combase!ReentrantSTAInvokeInApartment

combase!ComInvokeWithLockAndIPID

combase!ThreadDispatch

combase!ThreadWndProc

user32!UserCallWinProcCheckWow

user32!DispatchMessageWorker

combase!CCliModalLoop::MyDispatchMessage

combase!CCliModalLoop::PeekRPCAndDDEMessage

combase!CCliModalLoop::BlockFn

combase!ModalLoop

combase!ThreadSendReceive

combase!CSyncClientCall::SwitchAptAndDispatchCall

combase!CSyncClientCall::SendReceive2

combase!SyncClientCallRetryContext::SendReceiveWithRetry

combase!CSyncClientCall::SendReceiveInRetryContext

combase!ClassicSTAThreadSendReceive

combase!CSyncClientCall::SendReceive

combase!CClientChannel::SendReceive

combase!NdrExtpProxySendReceive

rpcrt4!Ndr64pSendReceive

rpcrt4!NdrpClientCall3

combase!ObjectStublessClient

combase!ObjectStubless

litware!Widget::~Widget

litware!Widget::`scalar deleting destructor'

litware!Widget::Release

contoso!Microsoft::WRL::ComPtr<IWidget>::InternalRelease

contoso!Microsoft::WRL::ComPtr<IWidget>::ReleaseAndGetAddressOf

contoso!Microsoft::WRL::Details::ComPtrRef<...>::operator struct IWidget **

contoso!WidgetTracker::OnCurrentWidgetChanged

rpcrt4!Invoke

rpcrt4!Ndr64StubWorker

rpcrt4!NdrStubCall3

combase!CStdStubBuffer_Invoke

combase!InvokeStubWithExceptionPolicyAndTracing::__l6::<lambda_...>::operator()

combase!ObjectMethodExceptionHandlingAction<<lambda_...> >

3/3

combase!InvokeStubWithExceptionPolicyAndTracing

...

Reading from the bottom up, what happened is that the current widget changed, and the

WidgetTracker received the change notification. The WidgetTracker locks the mutex,

and then wants to get the new current Widget , but first it releases the old Widget .

It is that release of the old widget that causes trouble, because it makes a cross-process call,

and while waiting for the cross-process call to complete, the current widget changes again,

and the OnCurrentWidgetChanged method gets called again. (It is evident that this code is

running on a single-threaded apartment. If it were running in a multi-threaded apartment,

the second call would have arrived on a different thread.)

The problem is that we are releasing our reference to the old widget while holding a lock, and

that creates the opportunity for mayhem, since we don’t control what the widget will do when

it is released. And if this is the final release of the widget, it will probably do a lot of work.

This is another case of the hidden callout: The destructor.

And the solution is the same: Destruct the reference to the old widget outside the lock.

HRESULT WidgetTracker::OnCurrentWidgetChanged()

{

 WRL::ComPtr<IWidget> widget;

 auto guard = std::lock_guard(m_mutex);

 RETURN_IF_FAILED(GetCurrentWidget(&widget));

 m_currentWidget.Swap(widget);

 return S_OK;

}

We declare a ComPtr<IWidget> before taking the lock, so that it destructs after the lock is

released. (Remember that in C++, local variables are destructed in reverse order of

construction.) After we get the current widget into the local widget , we swap it with the old

one, and then return.

The lock guard destructs first, which exits the lock. and then the ComPtr<IWidget>

destructs, which releases the old widget. This release occurs outside the lock, so any re-

entrancy is not going to create a deadlock.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20201111-00/?p=104439
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

