
1/5

September 1, 2022

Why am I getting a null pointer crash when trying to call a
method on my C++/WinRT object?

devblogs.microsoft.com/oldnewthing/20220901-00

Raymond Chen

A customer found that their program ran fine on their machine, but it crashed when run on a

Windows Server 2019 system.

namespace winrt

{

 using namespace winrt::Windows::Web::Http;

}

winrt::HttpClient httpClient;

// Crashes on the next line

auto result = co_await httpClient.TryGetStringAsync(L"http://example.com/");

if (result.Succeeded()) { /* use the result */ }

An inspection of the crash dump shows that we crashed inside the C++/WinRT projection:

check_hresult(WINRT_IMPL_SHIM(Windows::Web::Http::IHttpClient2)->

 TryGetStringAsync(*(void**)(&uri), &operation));

The problem is that WINRT_IMPL_SHIM is producing a null pointer, and therefore the

attempt to call the TryGetStringAsync method crashes.

The WINRT_IMPL_SHIM internal macro converts the this object into the appropriate

interface so we can call it. And it does this via the conversion operator:

template <typename D, typename I>

struct require_one : consume_t<D, I>

{

 operator I() const noexcept

 {

 return static_cast<D const*>(this)->template try_as<I>();

 }

};

Observe that the conversion operator uses try_as , which means that if the Query‐

Interface fails, then it returns nullptr .

https://devblogs.microsoft.com/oldnewthing/20220901-00/?p=107097

2/5

And that’s the problem.

The TryGetStringAsync method was added to the HttpClient object in Windows 10,

version 1903 (10.0.18362.0), and Windows Server 2019 corresponds to Windows 10, Version

1809 (10.0.17763.0). The QueryInterface call fails because the IHttpClient2 interface

is not supported on Windows Server 2019.

What happened is that the customer was using the Windows Runtime metadata files

corresponding to a more recent version of Windows than their target platform. You are

allowed to do that, but it also means that you have to be careful when trying to do things on

older systems. You have this same problem in classic Win32, where you have to avoid using

new versions of structures or calling new functions when running on older systems.

There are two general approaches for detecting whether a Windows Runtime feature is

supported.

The first is to ask the system whether the method exists, using the ApiInformation

runtime class:

namespace winrt

{

 using namespace winrt::Windows::Web::Http;

 using namespace winrt::Windows::Foundation::Metadata;

}

winrt::HttpClient httpClient;

winrt::hresult error;

winrt::hstring stringResult;

if (winrt::ApiInformation::IsMethodPresent(

 winrt::name_of<winrt::HttpClient>,

 L"TryGetStringAsync", 1)) {

 auto result = co_await client.TryGetStringAsync(L"http://example.com/");

 if (result.Succeeded()) stringResult = result.Value();

 else error = result.ExtendedError();

} else {

 // Running on older system that doesn't support TryGetStringAsync

 try {

 stringResult = co_await httpClient.GetStringAsync(L"http://example.com");

 } catch (...) {

 error = winrt::to_hresult();

 }

}

if (!error) { /* do something with stringResult */ }

else { /* deal with the error */ }

The above version probes by the method name and arity. “Is there a method on

HttpClient called TryGetAsync that takes one parameter?” The arity parameter is

optional, and if you omit it, then you are checking if a method by that name exists regardless

3/5

of arity. But since we know we’re calling the 1-parameter version, we should be specific and

look for the 1-parameter version.

Alternatively, you can look up in the documentation which interface supports TryGet‐

StringAsync and probe for the presence of the interface. A bonus static assertion tells the

compiler to check our work.

static_assert(&winrt::IHttpClient2::TryGetStringAsync);

if (winrt::ApiInformation::IsTypePresent(

 winrt::name_of<winrt::IHttpClient2>)) {

Another alternative is to look up in the documentation which contract version introduced the

method and probe for presence of that version of the contract.

namespace winrt

{

 using namespace winrt::Windows::Foundation;

}

if (winrt::ApiInformation::IsApiContractPresent(

 winrt::name_of<winrt::UniversalApiContract>(), 8)) {

If you have an older version of C++/WinRT, you can use the string literal

L"Windows.Foundation.UniversalApiContract" .

The second pattern is to to probe for for the interface that supports the method you want to

check.

winrt::HttpClient httpClient;

winrt::hresult error;

winrt::hstring stringResult;

static_assert(&winrt::IHttpClient2::TryGetStringAsync);

if (httpClient.try_as<winrt::IHttpClient2>()) {

 auto result = co_await client.TryGetStringAsync(L"http://example.com/");

 if (result.Succeeded()) stringResult = result.Value();

 else error = result.ExtendedError();

} else {

 // Running on older system that doesn't support TryGetStringAsync

 try {

 stringResult = co_await httpClient.GetStringAsync(L"http://example.com");

 } catch (...) {

 error = winrt::to_hresult();

 }

}

if (!error) { /* do something with stringResult */ }

else { /* deal with the error */ }

4/5

As an optimization, you can save the result of the query and use it to call the method. This

avoids a second query inside the projection. Note that if we do it this way, we no longer need

a static_assert to ask the compiler to check our work. It will check our work when we try

to call client2.TryGetStringAsync() .

winrt::HttpClient httpClient;

winrt::hresult error;

winrt::hstring stringResult;

if (auto client2 = httpClient.try_as<winrt::IHttpClient2>()) {

 auto result = co_await client2.TryGetStringAsync(L"http://example.com/");

 if (result.Succeeded()) stringResult = result.Value();

 else error = result.ExtendedError();

} else {

 // Running on older system that doesn't support TryGetStringAsync

 try {

 stringResult = co_await httpClient.GetStringAsync(L"http://example.com");

 } catch (...) {

 error = winrt::to_hresult();

 }

}

if (!error) { /* do something with stringResult */ }

else { /* deal with the error */ }

The story is the same: If an interface is marked as required in the metadata, then

C++/WinRT assumes that it will always be there. Because that’s what “required” means. If

you need to support running on a system that fails to satisfy the requirements, you’ll have to

detect the unmet requirements yourself.

Bonus chatter: Why does C++/WinRT work this way? Why doesn’t require_one use

as() , so that you get an hresult_no_interface exception instead of a hard crash?

Early versions of C++/WinRT indeed did that: They used as() and consequently threw an

hresult_no_interface exception if the interface was not present. The behavior was

changed some time before version 1.0.171013.2 to make the absence of a required interface a

fatal error instead of a recoverable one.

As I dimly recall, the reason is that checking the result and throwing a C++ exception was

bloating the code. Querying for non-default interfaces happens a lot in Windows Runtime

code, and all of the checks and throws were adding significant cost to each method call, as

well as generating a lot of exception-handling infrastructure code. A “required” interface

should never be missing (assuming you matched your SDK to the operating system), so there

was little incentive to check for something whose failure indicates that the operating system

and SDK teams messed up badly.

In the less common case that you need to write version-adaptive code, you can add the

appropriate checks yourself.

5/5

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

