
1/3

August 25, 2022

The AArch64 processor (aka arm64), part 22: Other kinds
of classic prologues and epilogues

devblogs.microsoft.com/oldnewthing/20220825-00

Raymond Chen

Last time, we looked at traditional classic function prologues in Windows on AArch64. But

there are variations.

For variadic functions, there is a small adjustment to the traditional prologue: The top of the

register save area contains spill space for the variadic register parameters. The variadic

register parameters are at the top so that they nestle directly against the stack-based

parameters, so that the entire variadic parameter list can be accessed uniformly in memory.

For example, a function whose prototype is

int something(int a, int b, ...);

could have a prologue that goes something like

 ; return address protection

 pacibsp

 ; saving registers + variadic parameters

 stp fp, lr, [sp, #-0x50]!

 str x19, [sp, #0x10]

 stp x2, x3, [sp, #0x20] ; variadic registers go here

 stp x4, x5, [sp, #0x30] ; variadic registers go here

 stp x6, x7, [sp, #0x40] ; variadic registers go here

 ; establishing frame chain

 mov fp, sp

 ; initializing GS cookie

 bl __security_push_cookie

 ; local variables and outbound parameters

 sub sp, sp, #0x80

for a combined stack layout of

https://devblogs.microsoft.com/oldnewthing/20220825-00/?p=107050
https://docs.microsoft.com/en-us/cpp/build/reference/gs-buffer-security-check

2/3

 return address

 ▶︎ previous fp

 ⋮

 stack param

 r7 param saved

register

area r6 param

 r5 param

 r4 param

 r3 param

 r2 param

 saved x19

 return address

 previous fp ← fp (frame chain)

 GS

area

 GS cookie

 local

variables

 local

stack

area
 outbound

stack
parameters

← sp

There is no change to the epilogue because variadic inbound register parameters don’t need

to be preserved across the call.

Another type of function that has a different prologue and epilogue is the lightweight leaf

function. This is a function that does not catch any exceptions, does not use any stack

(beyond the stack space provided by inbound stack-based parameters), and does not modify

3/3

any nonvolatile registers. These functions do not need to set up a stack frame or declare

exception unwind codes. Conversely, the operating system assumes that any function that

lacks exception unwind codes is a lightweight leaf function.¹ If the operating system needs to

unwind an exception that occurs in a lightweight leaf function, it just unwinds to the address

held in the lr register without updating any registers.

A third category of function is the shrink-wrapped function. This function starts out with a

minimal stack frame (possibly none, posing as a lightweight leaf function), but conditionally

optionally expands to a full stack frame. This is typically used for functions that have a fast

early-exit.

And of course, for any of these functions, the RET could turn into a B or BR if a tail call

optimization is in effect. Since the calling convention is caller-clean with many register-based

parameters, tail call optimization doesn’t require the tail-called function to have an identical

signature as the calling function. The tail call is in play as long as the tail-called function’s

stack parameter size is less than or equal to the stack parameter size of the calling function.

Okay, so that’s the prologue and epilogue. Next time, we’ll look at some code patterns you’ll

see in the function body itself.

¹ This clause always catches out people who are trying to write Windows programs in

assembly language. If you fail to declare unwind codes, then the operating system assumes

you are a lightweight leaf function: It assumes that the return address is in the lr register, and

it will continue stack walking at whatever address happens to be in that register, with

whatever stack happens to be active, and with whatever values happen to be in the

nonvolatile registers. This prevents the exception handlers installed by outer frames from

running, or at least from running correctly. If you’re lucky, the program is declared

“corrupted, possible malware” by the kernel when it notices that the frame chain is nonsense.

If you’re not lucky, the handler is called with invalid registers and an invalid stack, and things

spiral out of control. And if you’re super-unlucky, an attacker may be able to use this for a

remote code execution attack.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

