
1/6

August 24, 2022

The AArch64 processor (aka arm64), part 21: Classic
function prologues and epilogues

devblogs.microsoft.com/oldnewthing/20220824-00

Raymond Chen

Classic function prologues in Windows on AArch64 follow a common pattern. I’ll present the

full prologue, and then we’ll take it apart instruction by instruction.

 ; return address protection

 pacibsp

 ; saving registers

 stp fp, lr, [sp, #-0x30]!

 stp x19, x20, [sp, #0x10]

 str x21, [sp, #0x20]

 ; establishing frame chain

 mov fp, sp

 ; initializing GS cookie

 bl __security_push_cookie

 ; local variables and outbound parameters

 sub sp, sp, #0x80

The prologue breaks up into five sections, as marked off by comments above.

On entry to the function, we have this:

return address

previous fp ← fp (frame chain)

⋮

stack param ← sp

The first order of business is to apply return address protection.

https://devblogs.microsoft.com/oldnewthing/20220824-00/?p=107043
https://docs.microsoft.com/en-us/cpp/build/reference/gs-buffer-security-check

2/6

Next, we save nonvolatile registers. We build the next stack frame by pushing fp and lr onto

the stack into adjacent locations. The frame pointer and link register are always stored next

to each other because that’s what stack walking requires. The “push” onto the stack is done

by using a pre-incrementing store,¹ so that the stack pointer is adjusted, and then the values

written to the adjusted stack pointer.

Let’s walk through that “push” again:

 stp fp, lr, [sp, #-0x30]!

The effective address is sp − 0x30 , which is 0x30 bytes below the current stack pointer. At

that location, we store the fp and lr registers, and then the effective address is written back to

the base register sp.

return address

previous fp ← fp (frame chain)

⋮

stack param

return address

previous fp ← sp

The next instruction stores the x19 and x20 registers into the register save area we just

created.

 stp x19, x20, [sp, #0x10]

return address

previous fp ← fp (frame chain)

3/6

⋮

stack param

saved x20

saved x19

return address

previous fp ← sp

And the last instruction in the set saves the lone x21 register.

 str x21, [sp, #0x20]

return address

previous fp ← fp (frame chain)

⋮

stack param

saved x21

saved x20

saved x19

return address

previous fp ← sp

The stack must remain 16-byte aligned, which means that space must be reserved in

multiples of 2 registers. We have an odd number of registers to save, so one of the spaces we

reserved for the register save area goes to waste. (In theory, the compiler could decide to use

it to record a local variable, but in practice it doesn’t.)

The second part of the prologue re-establishes the frame chain.

4/6

 ; link this frame onto the frame chain

 mov fp, sp

 return address

 ▶︎ previous fp

 ⋮

 stack param

 saved x21

 saved x20

 saved x19

 return address

 previous fp ← fp (frame chain), sp

If the function contains a stack-based array, then the prologue inserts the GS cookie onto the

stack so that a buffer overflow from the stack-based array is likely to corrupt the cookie

before it gets to the saved return address.

 bl __security_push_cookie

Even though the cookie is only the size of a register, the function pushes 16 bytes onto the

stack due to the requirement that the stack remain 16-byte aligned.

The cookie management functions use the xip0 and xip1 registers to do the work of

calculating or validating the cookie. These registers are volatile and are assumed to be

modified by any branch instruction, and we used a branch instruction to get to the start of

the prologue, so we know that xip0 and xip1 cannot be used to pass information from the

caller to the callee, not even for a nonstandard calling convention.

Finally, the prologue allocates space for stack-based local variables and outbound

parameters.

https://docs.microsoft.com/en-us/cpp/build/reference/gs-buffer-security-check

5/6

 sub sp, sp, #0x80

We then reach the function body with this stack layout:

 return address

 ▶︎ previous fp

 ⋮

 stack param

 saved

register

area saved x21

 saved x20

 saved x19

 return address

 previous fp ← fp (frame chain)

 GS

area

 GS cookie

 local

variables

 local

stack

area
 outbound

stack
parameters

← sp

When the function returns, the above steps are reversed.

 add sp, sp, #0x80 ; discard local stack area

 bl __security_pop_cookie ; validate and pop GS cookie

 ldr x21, [sp, #0x20] ; restore register

 ldp x19, x20, [sp, #0x10] ; restore registers

 ldp fp, lr, [sp], #0x30 ; restore register and pop

 autibsp ; validate return address

 ret ; return

6/6

The final ldp uses the post-increment addressing mode so that the stack pointer is

increased by 0x30 after the registers are loaded.

Restoring the fp register unlinks the current stack frame from the frame chain. And restoring

the lr register puts the return address back into lr, which we validate, and then use in the

ret instruction to return to the caller.²

Not all of these steps will be present in all function prologues. A function that has no stack-

based local variables or outbound parameters will not create a local stack area. A function

that has no stack-based arrays will not create a GS cookie. And a lightweight leaf function

won’t even bother saving any registers or protecting the return address.

Next time, we’ll look at special cases that will diverge from this traditional prologue/epilogue

pattern.

¹ Though since the offset is negative, you can think of it as a pre-decrementing store.

² In AArch64, the program counter pc is not a general-purpose register, so you don’t see the

trick popular in AArch32 where the return address is popped into the pc register to return to

the caller. For AArch64, we see the more traditional pattern of restoring the return address

into lr and then explicitly returning to it.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

