
1/3

August 22, 2022

The AArch64 processor (aka arm64), part 19:
Miscellaneous instructions

devblogs.microsoft.com/oldnewthing/20220822-00

Raymond Chen

There are far more instructions than I’m going to cover here in this series. I’ve skipped over

the floating point instructions, the SIMD instructions, and specialty instructions that I

haven’t yet seen come out of the compiler. I’m also largely skipping over the instructions that

are not part of the core instruction set but are available only in optional extensions.

Here are a few that are still interesting, even if I haven’t seen the compiler generate them.

 ; count leading zeroes (high order bits)

 clz Rd, Rm ; Rd = number of leading zeroes in Rm

 ; count leading sign bits (high order bits)

 cls Rd, Rm ; Rd = number of leading sign bits in Rm

 ; reverse bits in register

 rbit Rd, Rm ; Rd = Rm bitwise reversed

 ; reverse bytes in register

 rev Rd, Rm ; Rd = Rm bytewise reversed

 ; reverse bytes in each halfword

 rev16 Rd, Rm

 ; reverse bytes in each word

 rev32 Rd, Rm

 ; reverse bytes in doubleword

 ; (pseudo-instruction, equivalent to rev with 64-bit register)

 rev64 Rd, Rm

A few miscellaneous bit-fiddling instructions. The reversal instructions are primarily for

changing data endianness. AArch64 lost the REVSH instruction from AArch32.

The next few instructions provide multiprocessing hints.

https://devblogs.microsoft.com/oldnewthing/20220822-00/?p=107032

2/3

 ; yield to other threads

 yield

 ; wait for interrupt (privileged instruction)

 wfi

The YIELD instruction is a hint to multi-threading processors that the current thread

should be de-prioritized in favor of other threads. You typically see this instruction dropped

into spin loops, via the intrinsic __yield() .

The WFI instruction instructs the processor to go into a low-power state until an interrupt

occurs. There are other instructions related to “events” which I won’t bother going into.

The next few instructions are for communicating with the operating system:

 hlt #imm16 ; halt

 svc #imm16 ; system call

 brk #imm16 ; software breakpoint

 udf #imm16 ; undefined opcode

The instructions carry a 16-bit immediate that the operating system can choose to use for

whatever purpose it desires.

The undefined opcode is a range of instructions from 0x00000000 through 0x0000ffff

that are architecturally set aside as permanently undefined instructions.¹

Windows uses BRK for special operations.

 brk #0xf000 ; breakpoint

 brk #0xf001 ; assertion failure

 brk #0xf002 ; debug service

 brk #0xf003 ; fastfail

 brk #0xf004 ; divide by zero

The divide-by-zero breakpoint is emitted by the compiler if it detects a zero denominator.

 cbnz w0, @F ; jump if denominator is nonzero

 brk #0xf004 ; oops: manually raise div0 exception

@@: sdiv w0, w1, w2 ; signed divide

And of course, we have this guy:

 nop

The NOP instruction does nothing but occupy space. Use it to pad code to meet alignment

requirements, but do not use it for timing.

Now that we have the basic instruction set under our belt, we’ll look at the calling convention

next time.

3/3

¹ This means that zero encodes udf #0 , which will trap on an invalid instruction. This is

different from classic ARM, where zero encodes andeq r0, r0, r0 which is functionally a

nop, and Thumb-2, where zero is the movs r0, r0 instruction, which is a mostly-nop

except that it sets flags. Personally, I’m a big fan of having zero encode an invalid instruction.

It helps post-mortem debugging a lot.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

