
1/5

August 11, 2022

The AArch64 processor (aka arm64), part 13: Atomic
access

devblogs.microsoft.com/oldnewthing/20220811-00

Raymond Chen

Atomic operations are performed by the traditional RISC-style load locked/store conditional

pattern.

 ; load exclusive register byte

 ldxrb Rd/zr, [Xn/sp]

 ; load exclusive register halfword

 ldxrh Rd/zr, [Xn/sp]

 ; load exclusive register

 ldxr Rd/zr, [Xn/sp]

 ; load exclusive register pair

 ldxp Rd1/zr, Rd2/zr, [Xn/sp]

These instructions atomically load a byte, halfword, word, doubleword, or pair of registers

from memory. The instruction also tells the processor to monitor the memory address to see

if any other processor writes to that same address, or addresses in the same “exclusive

reservation granule”. (Implementations are allowed to have granules as large as 2KB.)

Note that the atomicity guarantee is only partial if you use LDXP to load a pair of 64-bit

registers.¹ The entire 128-bit value is not loaded atomically; instead, each 64-bit portion is

loaded atomically separately. You can still get tearing between the two registers.

The only supported addressing mode is register indirect. No offsets or indexes allowed.

After an exclusive load, you can attempt to store a value back to the same address:

https://devblogs.microsoft.com/oldnewthing/20220811-00/?p=106963

2/5

 ; store exclusive register byte

 stxrb Rs/zr, Rt/zr, [Xn/sp]

 ; store exclusive register halfword

 stxrh Rs/zr, Rt/zr, [Xn/sp]

 ; store exclusive register

 stxr Rs/zr, Rt/zr, [Xn/sp]

 ; store exclusive register pair

 stxp Rs/zr, Rt1/zr, Rt2/zr, [Xn/sp]

If the reservation obtained by the previous LDX instruction is still valid, then the value in

Rt/zr is stored to memory, and Rs is set to 0. Otherwise, no store is performed, and Rs is set

to 1.

Whether the store succeeds or fails, the STX instructions clears the reservation.

For these exclusive load and store instructions, the address must be a multiple of the number

of bytes being loaded. If not, then the behavior is undefined: There is no requirement that an

exception be raised.

So don’t do that.

It is also required that the STX match the LDX both in address and operand sizes. You

cannot perform an LDX for one address and follow up with a STX to a different address.

You also cannot perform a LDXR and follow up with a STXRH to the same address. You

aren’t even allowed to do a LDXP with two 32-bit registers and follow up with a STXR with

a single 64-bit register. Again, the behavior is undefined if you break this rule.

The last instruction allows you to hit the reset button:

 ; clear exclusive

 clrex

The CLREX discards any active reservation, and forces any subsequent STX to fail. This

typically happens as part of interrupt handling or context switching to ensure that undefined

behavior doesn’t occur if the thread was interrupted while it was in the middle of a

LDX / STX sequence.

These instructions are usually coupled with memory barriers, which we’ll look at soon, but

the next entry will be a little diversion.

Bonus chatter: There is an optional instruction set extension (mandatory starting in

version 8.4) which includes a large set of atomic read-modify-write operations.

3/5

 ; atomic read-modify-write operation

 ; Rt = previous value of [Xr]

 ; [Xr] = Rt op Rs

 ldadd Rs/zr, Rt/zr, [Xr/sp] ; add

 ldclr Rs/zr, Rt/zr, [Xr/sp] ; and not

 ldeor Rs/zr, Rt/zr, [Xr/sp] ; exclusive or

 ldset Rs/zr, Rt/zr, [Xr/sp] ; or

 ldsmax Rs/zr, Rt/zr, [Xr/sp] ; signed maximum

 ldsmin Rs/zr, Rt/zr, [Xr/sp] ; signed minimum

 ldumax Rs/zr, Rt/zr, [Xr/sp] ; unsigned maximum

 ldumin Rs/zr, Rt/zr, [Xr/sp] ; unsigned minimum

By default, there is no memory ordering. You can add the suffix a to load with acquire, the

suffix l to store with release, or the suffix al to get both. Note, however, that the acquire

suffix is ignored if the destination register Rt is zr.

Furthermore, you can suffix b for byte memory access or h for halfword memory access.

The overall syntax is therefore

Prefix Op Acquire Release Size

ld add

clr

eor

set

smax

smin

umax

umin

(none)

a

(none)

l

(none)

b

h

For example, the instruction ldclrlh means

ld : Atomic load/modify/store

clr : Clear bits

(blank): No acquire on load

l : Release on store

h : Halfword size.

If you don’t care about the previous value, then you can use a pseudo-instruction that uses zr

as the destination.

4/5

 ; atomic read-modify-write operation

 ; [Xr] = [Xr] op Rs

 stadd Rs/zr, [Xr/sp] ; add

 stclr Rs/zr, [Xr/sp] ; and not

 steor Rs/zr, [Xr/sp] ; exclusive or

 stset Rs/zr, [Xr/sp] ; or

 stsmax Rs/zr, [Xr/sp] ; signed maximum

 stsmin Rs/zr, [Xr/sp] ; signed minimum

 stumax Rs/zr, [Xr/sp] ; unsigned maximum

 stumin Rs/zr, [Xr/sp] ; unsigned minimum

You can add the l suffix for store with release, and you can add b and h suffixes to

operate on smaller sizes. You cannot request acquire on load for these instructions because

the acquire is ignored due to the destination being zr.

The optional instruction set extension also provides for atomic exchanges:

 ; swap

 ; write Rs and return previous value in Rt (atomic)

 swp Rs/zr, Rt/zr, [Xn/sp] ; word or doubleword

 swpb Ws/zr, Wt/zr, [Xn/sp] ; byte

 swph Ws/zr, Wt/zr, [Xn/sp] ; halfword

 ; compare and swap

 ; if value is Rs, then write Rt; Rs receives previous value

 ; (atomic)

 cas Rs/zr, Rt/zr, [Xn/sp] ; word or doubleword

 casb Ws/zr, Wt/zr, [Xn/sp] ; byte

 cash Ws/zr, Wt/zr, [Xn/sp] ; halfword

 casp Rs/zr, Rt/zr, [Xn/sp] ; register pair

 ; Rs,R(s+1) and Rt,R(t+1)

 ; also a, l, and al versions for acquire/release semantics

The memory order modifiers go between the swp / cas prefix and the size suffix, except

that they go after the p . So you have casab (compare and swap with acquire, byte size)

but caspa (compare and swap pair with acquire).

As with the ld instructions, requests to aquire on load are ignored if the destination

register is zr.

The memory operand must be writable, even if the comparison fails. If no value is stored,

then any requested release semantics are ignored.

Bonus reading: Atomics in AArch64.

¹ The load is required to be fully atomic starting with version 8.4 of the AArch64. On older

processors, Windows uses CASP instead of LDXP / STXP .

Raymond Chen

https://cpufun.substack.com/p/atomics-in-aarch64
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

5/5

Follow

