
1/3

August 10, 2022

The AArch64 processor (aka arm64), part 12: Memory
access and alignment

devblogs.microsoft.com/oldnewthing/20220810-00

Raymond Chen

Accessing memory is done primarily through load and store instructions.

 ; load word or doubleword register

 ldr Rn/zr, [...]

 ; load unsigned byte

 ldrb Wn/zr, [...]

 ; load signed byte

 ldrsb Rn/zr, [...]

 ; load unsigned halfword

 ldrh Wn/zr, [...]

 ; load signed halfword

 ldrsh Rn/zr, [...]

 ; load signed word

 ldrsw Xn/zr, [...]

 ; load pair of registers

 ldp Rd1/zr, Rd2/zr, [...]

 ; load pair of registers as signed word

 ldpsw Xd1/zr, Xd2/zr, [...]

AArch64 does not have AArch32’s LDM instruction for loading up to 13 registers at once. As

a consolation present, it gives you a LDP instruction for loading two registers, either 32-bit

or 64-bit, from consecutive bytes of memory. (The first register uses the lower address.) The

LDP instruction is commonly used with the 64-bit registers to load spilled registers from the

stack.

There is a corresponding selection of instructions for storing to memory, but obviously the

sign extension variations are not relevant.

https://devblogs.microsoft.com/oldnewthing/20220810-00/?p=106958

2/3

 ; store word or doubleword register

 str Rn/zr, [...]

 ; store byte

 strb Wn/zr, [...]

 ; store halfword

 strh Wn/zr, [...]

 ; store pair of registers

 stp Rd1/zr, Rd2/zr, [...]

Not all addressing modes are available for all variations. This is not something you worry

about when reading assembly language, but it’s something you need to keep in mind when

writing it.

Size

[Xn/sp,
#imm]

(−256 … +255)

[Xn/sp,
#imm]

[Xn/sp,
#imm]!

[Xn/sp],
#imm

[pc,
#imm]

(±1MB)
[Xn/sp, Rn/zr,
extend]

byte • • •

halfword • • •

word • • loads only •

doubleword • • loads only •

pair •

The reach of the second column is is (0 … 4095) × size, except that the reach of the the

register pairs is (−64 … 63) × size.

All operand sizes support register indirect with offset. Only word and doubleword support

pc-relative (and even those are supported only for loads). And register pairs support only

register indirect with offset.

There are some ambiguous encodings, because a constant offset in the range 0 … 255 that is a

multiple of the operand size can be encoded either as a 9-bit signed byte offset, or as a 12-bit

unsigned element offset. By default, assemblers will use the 12-bit unsigned element offset,

but you can force the 9-bit signed byte offset by changing the opcode from LDxxx and

STxxx to LDUxxx and STUxxx . The U stands for unscaled.

3/3

Windows enables automatic unaligned access fixups. Simple unaligned memory accesses are

fixed up automatically by the processor, but you lose atomicity: It is possible for an unaligned

memory access to read a torn value. Any such tearing is at the byte level.

Original value 12 34 56 78 aligned

Processor 1 reads misaligned

Processor 2 writes AB CD EF 01 aligned

The misaligned halfword read from processor 1 could produce 34|56 , 34|EF , CD|56 , or

CD|EF . But it won’t produce 3D|EF .

You can still take alignment faults if the misaligned memory access is fancy, such as a locked

load, store exclusive, or a load with a memory barrier. We’ll learn about these special

memory accesses next time.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

