The AArch64 processor (aka arm64), part 10: Loading
constants

B® devblogs.microsoft.com/oldnewthing/20220808-00

August 8, 2022

3
Raymond Chen

Since AArch64 uses fixed-size 32-bit instructions, you have to exercise some creativity to load
a 64-bit constant.

; move wide with zero

; Rd = imml16 << n

; n can be 0, 16, 32, or 48
movz Rd, #imm16, LSL #n

; move wide with not

; Rd = ~(imm16 << n)

; n can be 0, 16, 32, or 48
movn Rd, #imml16, LSL #n

; move wide with keep
; Rd[n+15:n] = imm16
movk Rd, #imm16, LSL #n

The MOVZz instruction loads a 16-bit unsigned value into one of the four lanes of a 64-bit
destination, or one of the two lanes of a 32-bit destination. All the remaining lanes are set to
ZEro.

The MOVN instruction does the same thing as MOVZ , except the whole thing is bitwise
negated. (Be careful not to confuse MOVN with MVN .)

The MOVK instruction does the same thing as MOVZ , except that instead of setting the other
lanes to zero, the other lanes are left unchanged.

Loading a 32-bit value can be done in two instructions by using Movz to load 16 bits into
half of the register, than the MOvK into the other half.

0x00001234
OXABCD1234

movz ro, #0x1234 ; ro
movk ro, #OXABCD, LSL #16 ; ro

1/3

https://devblogs.microsoft.com/oldnewthing/20220808-00/?p=106953

This technique can be extended to load a 64-bit value in four steps, but that’s getting quite
unwieldy. The compiler is more likely to store the value in the code segment and use a pc-
relative addressing mode to load it.

; special syntax for pc-relative loads
1dr X0, =0x123456789ABCDEFO ; load 64-bit value
1ldr wo, =0x12345678 ; load 32-bit value

As I noted in the discussion of addressing modes, the assembler and disassembler use this
special equals-sign notation to represent a pc-relative load. It means that the value is stored
in a literal pool in the code segment, and a pc-relative load is being used to fetch it. The
assembler batches up all of these literals and emits them between functions. The pc-relative
load has a reach of +1MB, so you are unlikely to run into the problem that you had on
AArch32, where the reach was only +4KB, and you had to find a safe place to dump the
literals in the middle of the function.

There are quite a number of instructions that generate constants, and if you use the Mov
pseudo-instruction, the assembler will try to find one that works.

; load up a constant somehow

mov Rd, #imm
Instruction Used for
add Rd, zr, #immi2 OX00000000 OROOOXXX
add Rd, zr, #immi12, LSL OX00000000 OOXXXO00
#12
sub wWd, wzr, #immi12 OX00000000 FFFFFXXX
sub wWd, wzr, #imml2, Ox00000000 FFXXXFFF
LSL #12
sub Xd, xzr, #immi2 OXFFFFFFFF FFFFFXXX
sub Xd, xzr, #immil2, OXFFFFFFFF FFXXXFFF
LSL #12
movz Rd, #imm16 OX00000000 OOEOXXXX
movz Rd, #imml16, LSL OX00000000 XXXXO000
#16
movz Rd, #imml16, LSL OXOOOOXXXX 00000000
#32
movz Rd, #imm16, LSL OXXXXX0000 00000000
#48

2/3

movn Wd, #imm16 0x00000000 " FFFFXXXX

movn Wd, #imm16, LSL 0x00000000 " XXXXFFFF

#16

movn Xd, #imm16 OXFFFFFFFF " FFFFXXXX

movn Xd, #immi16, LSL OXFFFFFFFF XXXXFFFF

#16

movn Xd, #immi16, LSL OXFFFFXXXX " FFFFFFFF

#32

movn Xd, #immi16, LSL OXXXXXFFFFFFFFFFFF

#48

orr Xd, xzr, #imm Value can be expressed as a Bitwise operation constant

orr Wd, wzr, #imm Value can be expressed as lower 32 bits of a Bitwise
operation constant

A common type of sort-of constant is the address of a global variable. It’s a constant whose
value isn’t discovered until runtime. We’ll look at those next time.

Raymond Chen

Follow

3/3

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

