
1/4

August 4, 2022

The AArch64 processor (aka arm64), part 8: Bit shifting
and rotation

devblogs.microsoft.com/oldnewthing/20220804-00

Raymond Chen

Bit shifting and rotation instructions on AArch64 fall into two general categories: Hard-

coded shift amounts and variable shifts.

The hard-coded shifts are done by repurposing the versatile bitfield manipulation

instructions.

 ; logical shift left by fixed amount

 ; ubfiz Rd, Rn, #(size-shift), #shift

 lsl Rd/zr, Rn/zr, #shift

 ; logical shift right by fixed amount

 ; ubfx Rd, Rn, #(size-shift), #shift

 lsr Rd/zr, Rn/zr, #shift

 ; arithmetic shift right by fixed amount

 ; sbfx Rd, Rn, #(size-shift), #shift

 asr Rd/zr, Rn/zr, #shift

Left shifting is done by doing a bit insertion of the surviving bits into the upper bits of the

destination. It’s the special case where the number of bits is exactly equal to the register size

minus the shift amount.

shift size−shift

⇙ ⇙ ⇙ ⇙

 zero-fill

size−shift shift

https://devblogs.microsoft.com/oldnewthing/20220804-00/?p=106945
https://devblogs.microsoft.com/oldnewthing/20220803-00/?p=106941

2/4

Right shifting is the same thing, but using the unsigned bitfield extract instruction to go in

the opposite direction:

size−shift shift

⇘ ⇘ ⇘ ⇘

zero-fill

shift size−shift

And arithmetic right shifting uses the signed bitfield extract in order to get sign-extension

behavior.

size−shift shift

S

⇓
⇘ ⇘ ⇘ ⇘

sign-fill S

shift size−shift

Rotation can be synthesized from double-register extraction by using the rotation source as

both of the source registers for extraction.

 ; rotate right by fixed amount

 ; extr Rd, Rs, Rs, #shift

 ror Rd/zr, Rs/zr, #shift

 size shift

Rs Rs

3/4

⇓ ⇓ ⇓ ⇓

 Rd

Note that there is no “rotate with carry” instruction. The AArch32 rrx instruction does not

exist in AArch64.¹ It would have been handy for finding the average of two unsigned integers

without overflow.

The variable shifts have their own dedicated instructions.

 ; logical shift left variable

 ; Wd = Wn << (Wm & 31)

 ; Xd = Xn << (Xm & 63)

 lslv Rd/zr, Rn/zr, Rm/zr

 ; logical shift right variable

 ; Wd = Wn >> (Wm & 31), unsigned shift

 ; Xd = Xn >> (Xm & 63), unsigned shift

 lsrv Rd/zr, Rn/zr, Rm/zr

 ; arithmetic shift right variable

 ; Wd = Wn >> (Wm & 31), signed shift

 ; Xd = Xn >> (Xm & 63), signed shift

 asrv Rd/zr, Rn/zr, Rm/zr

 ; rotate right variable

 ; Rd = Rn rotated right by Rm positions

 rorv Rd/zr, Rn/zr, Rm/zr

Note that the shift amount is taken modulo the bit size of the operand. (This doesn’t really

matter for RORV since rotating by the operand bit size has no effect.)

The pseudo-instructions LSL LSR , ASR , and ROR accept a register as the second input

operand and convert it to the corresponding V instruction. This means that when writing

assembly, you can just write LSL and let the assembler figure out which real opcode it

corresponds to.

There are no S variants to the bit shifting instructions. They never update flags, unlike

AArch32, which updated the carry with the last bit shifted out. If you want to know what bit

got shifted out, you’ll have to calculate it yourself, say by shifting the same value again, but by

one less position, and then inspecting the top/bottom bit (depending on the shift direction).

I have my guesses as to why the designers removed the flags behavior from these

instructions: First, it removes a partial register update (flags), which creates a usually-

unwanted dependency on the previous flags. Second, no major programming language gives

https://devblogs.microsoft.com/oldnewthing/20220207-00/?p=106223

4/4

you access to the bit that was shifted out, so it wasn’t used in practice anyway.

Exercise: Suppose there was no double-register extraction instruction or variable rotation

instruction. Synthesize fixed and variable rotation from other instructions. (Answer below.)

Bonus chatter: In AArch32, the bottom 8 bits of the shift-count register were used. But in

AArch64, only the bottom 5 (for 32-bit operands) or 6 (for 64-bit operands) bits are used.

Answer to exercise: You can synthesize a fixed rotation from a shift and a bitfield

insertion.

 ; rotate r1 left by #imm, producing r0

 ; r1 = ABCDEFGH

 lsl r0, r1, #imm ; r0 = EFGH0000

 bfxil r0, r1, #(size-imm), #imm ; r0 = EFGHABCD

A variable rotation can be synthesized from a pair of shifts.

 ; rotate r1 left by r2, producing r0

 ; (destroys r2)

 ; r1 = ABCDEFGH

 lslv r0, r1, r2 ; r0 = EFGH0000

 mvn r2, r2 ; r2 = leftover bits

 lsrv r2, r1, r2 ; r2 = 0000ABCD

 orr r0, r0, r2 ; r0 = EFGHABCD

¹ Although it doesn’t explicitly have a “rotate left through carry” instruction, you can still do

it in a single instruction:

 adcs r0, r1, r1 ; r0 = r1 rotated left through carry

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

