
1/6

August 3, 2022

The AArch64 processor (aka arm64), part 7: Bitfield
manipulation

devblogs.microsoft.com/oldnewthing/20220803-00

Raymond Chen

Recall that the PowerPC had the magical rlwinm instruction which was the Swiss army knife

of bit operations. Well, AArch64 has its own all-purpose instruction, known as UBFM , which

stands for unsigned bitfield move.

 ; unsigned bitfield move

 ;

 ; if immr ≤ imms:

 ; take bits immr through imms and rotate right by immr

 ;

 ; if immr > imms:

 ; take imms+1 low bits and rotate right by immr

 ubfm Rd/zr, Rn/zr, #immr, #imms

This instruction hurts my brain. Although the description of the instruction appears to be two

unrelated cases, they are handled by the same complex formula internally. It’s just that the

formula produces different results depending on which case you’re in. The complex formula

is the same one that is used to generate immediates for logical operations, so I’ll give the

processor designers credit for the clever way they reduced transistor count.

Fortunately, you never see this instruction in the wild. The two cases are split into separate

pseudo-instructions, which re-express the immr and imms values in a more intuitive way.

 ; unsigned bitfield extract

 ; (used when immr ≤ imms)

 ; extract w bits starting at position lsb

 ubfx Rd/zr, Rn/zr, #lsb, #w

The UBFX instruction handles the case of UBFM where immr ≤ imms and reinterprets it as

a bitfield extraction:

 w lsb

https://devblogs.microsoft.com/oldnewthing/20220803-00/?p=106941
https://devblogs.microsoft.com/oldnewthing/20180810-00/?p=99465

2/6

⇘ ⇘ ⇘ ⇘

zero-fill

 w

Since immr ≤ imms, the right-rotation by immr is the same as a right-shift by immr.

And then we have the other case, where immr > imms:

 ; unsigned bitfield insert into zeroes

 ; (used when immr > imms)

 ; extract low-order w bits and shift left by lsb

 ubfiz Rd/zr, Rn/zr, #lsb, #w

The UBFIZ instruction reinterprets the UBFM as a bitfield insertion, and reinterprets the

right-rotation as a left-shift. This reinterpretation is valid because immr > imms, so we are

always rotating more bits than we extracted.

 w

⇙ ⇙ ⇙ ⇙

zero-fill zero-fill

 w lsb

There is also a signed version of this instruction:

 ; signed bitfield move

 ;

 ; if immr ≤ imms:

 ; take bits immr through imms and rotate right by immr

 ; sign-fill upper bits

 ;

 ; if immr > imms:

 ; take imms+1 low bits and rotate right by immr

 ; sign-fill upper bits

 sbfm Rd/zr, Rn/zr, #immr #imms

3/6

This behaves the same as the unsigned version, except that the upper bits are filled with the

sign bit of the bitfield. Like UBFM , the SBFM instruction is also never seen in the wild; it is

always replaced by a pseudo-instruction.

 ; signed bitfield extract

 ; (used when immr ≤ imms)

 ; extract w bits starting at position lsb

 ; sign-fill upper bits

 sbfx Rd/zr, Rn/zr, #lsb, #w

 ; signed bitfield insert into zeroes

 ; (used when immr > imms)

 ; extract low-order w bits and shift left by lsb

 ; sign-fill upper bits

 sbfiz Rd/zr, Rn/zr, #lsb, #w

Here is the operation of SBFX in pictures:

 w lsb

 S

⇘ ⇘ ⇘ ⇘

sign-fill ⇐⇐⇐ S

 w

And here is SBFIZ :

 w

 S

⇙ ⇙ ⇙ ⇙

sign-fill ⇐⇐⇐ S zero-fill

 w lsb

Note that in the case of SBFIZ , the lower bits are still zero-filled.

4/6

The last bitfield opcode is BFM , which follows the same pattern, but just combines the

results differently:

 ; bitfield move

 ;

 ; if immr ≤ imms:

 ; take bits immr through imms and rotate right by immr

 ; merge with existing bits in destination

 ;

 ; if immr > imms:

 ; take imms+1 low bits and rotate right by immr

 ; merge with existing bits in destination

 bfm Rd/zr, Rn/zr, #immr #imms

Again, you will never see this instruction in the wild because it always disassembles as a

pseudo-instruction:

 ; bitfield extract and insert low

 ; (used when immr ≤ imms)

 ; replace bottom w bits in destination

 ; with w bits of source starting at lsb

 ;

 ; Rd[w-1:0] = Rn[lsb+w-1:lsb]

 ;

 bfxil Rd/zr, Rn/zr, #lsb, #w

The BFXIL instruction is like the UBFX and SBFX instructions, but instead of filling the

unused bits with zero or sign bits, the original bits of the destination are preserved.

 w lsb

⇘ ⇘ ⇘ ⇘

unchanged

 w

5/6

 ; bitfield insert

 ; (used when immr > imms)

 ; replace w bits in destination starting at lsb

 ; with low w bits of source

 ;

 ; Rd[lsb+w-1:lsb] = Rn[w-1:0]

 ;

 bfi Rd/zr, Rn/zr, #lsb, #w

The BFI instruction is like the UBFIZ and SBFIZ instructions, but instead of filling the

unused bits with zero or sign bits, the original bits of the destination are preserved.

 w

⇙ ⇙ ⇙ ⇙

unchanged unchanged

 w lsb

 ; bitfield clear

 ; replace w bits in destination starting at lsb

 ; with zero

 ;

 ; Rd[lsb+w-1:lsb] = 0

 ;

 bfc Rd/zr, #lsb, #w ; bfi Rd/zr, zr, #lsb, #w

The BFC instruction just inserts zeroes.

unchanged zero-fill unchanged

 w lsb

The last instruction in the bitfield manipulation category is word/doubleword extraction.

 ; extract a register from a pair of registers

 ;

 ; Wd = ((Wn << 32) | Wm)[lsb+31:lsb]

 ; Xd = ((Xn << 64) | Xm)[lsb+63:lsb]

 ;

 extr Rd/zr, Rn/zr, Rm/zr, #lsb

6/6

The extract register instruction treats its inputs as a register pair and extracts a register-

sized stretch of bits from them. This can be used to synthesize multiword shifts.

 size shift

Rn Rm

⇓ ⇓ ⇓ ⇓

 Rd

Note that the two input registers are concatenated in big-endian order.

It turns out that a lot of other operations can be reinterpreted as bitfield extractions. We’ll

look at some of them next time.

Bonus chatter: AArch32 also had instructions bfi , bfc , ubfx , and sbfx , but each

was treated as a unique instruction. AArch64 generalizes them to cover additional scenarios,

leaving the classic instructions as special cases of the generalized instructions.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

