
1/4

August 1, 2022

The AArch64 processor (aka arm64), part 5:
Multiplication and division

devblogs.microsoft.com/oldnewthing/20220801-00

Raymond Chen

There are a lot of ways of multiplying two values. The most basic way is to multiply two

registers of the same size, producing a result of the same size.

 ; multiply and add

 ; Rd = Ra + (Rn × Rm)

 madd Rd/zr, Rn/zr, Rm/zr, Ra/zr

 ; multiply and subtract

 ; Rd = Ra - (Rn × Rm)

 msub Rd/zr, Rn/zr, Rm/zr, Ra/zr

The product is then added to or subtracted from a third register.

You get some pseudo-instructions if you hard-code the third input operand to zero.

 ; multiply

 mul a, b, c ; madd a, b, c, zr

 ; multiply and negate

 mneg a, b, c ; msub a, b, c, zr

The next fancier way of multiplying two registers is to multiply two 32-bit registers and get a

64-bit result.

https://devblogs.microsoft.com/oldnewthing/20220801-00/?p=106922

2/4

 ; unsigned multiply and add long

 ; Xd = Xa + (Wn × Wm), unsigned multiply

 umaddl Xd/zr, Wn/zr, Wm/zr, Xa/zr

 ; unsigned multiply and subtract long

 ; Xd = Xa - (Wn × Wm), unsigned multiply

 umsubl Xd/zr, Wn/zr, Wm/zr, Xa/zr

 ; signed multiply and add long

 ; Xd = Xa + (Wn × Wm), signed multiply

 smaddl Xd/zr, Wn/zr, Wm/zr, Xa/zr

 ; signed multiply and subtract long

 ; Xd = Xa - (Wn × Wm), signed multiply

 smsubl Xd/zr, Wn/zr, Wm/zr, Xa/zr

Again, the result of the multiplication is added to or subtracted from an accumulator. The

naming of this opcode is a little confusing, because the word long in the opcode talks about

the multiplication, not the addition or subtraction. The multiplication is 32 × 32 → 64, and

the result is then accumulated as a 64-bit value.

You can probably guess what the pseudo-instructions are. Just hard-code the zero register as

the accumulator.

 ; unsigned multiply long

 umull a, b, c ; umaddl a, b, c, zr

 ; unsigned multiply and negate long

 umnegl a, b, c ; umsubl a, b, c, zr

 ; signed multiply long

 smull a, b, c ; smaddl a, b, c, zr

 ; signed multiply and negate long

 smnegl a, b, c ; smsubl a, b, c, zr

The last multiplication instruction gives you the missing piece of the 64 × 64 → 128 multiply.

 ; unsigned multiply high

 ; Xd = (Xn × Xm) >> 64, unsigned multiply

 umulh Xd/zr, Xn/zr, Xm/zr

 ; signed multiply high

 ; Xd = (Xn × Xm) >> 64, signed multiply

 smulh Xd/zr, Xn/zr, Xm/zr

These give you the upper 64 bits of a 64 × 64 → 128 multiply. If you want the full 128 bits,

you combine it with the corresponding 64 × 64 → 64 multiply to get the lower 64 bits.

3/4

 ; unsigned 64 × 64 → 128

 ; r1:r0 = r2 × r3

 mul r0, r2, r3

 umulh r1, r2, r3

 ; signed 64 × 64 → 128

 ; r1:r0 = r2 × r3

 mul r0, r2, r3

 smulh r1, r2, r3

Don’t be fooled by the lack of symmetry: Even though there is a UMULL instruction, it is not

the counterpart to UMULH , and SMULL instruction is not the counterpart to SMULH !

Whereas there are a large variety of ways to multiple two registers, there are only two ways to

divide them.

 ; unsigned divide

 ; Rd = Rn ÷ Rm, unsigned divide, round toward zero

 udiv Rd/zr, Rn/zr, Rm/zr

 ; signed divide

 ; Rd = Rn ÷ Rm, signed divide, round toward zero

 sdiv Rd/zr, Rn/zr, Rm/zr

If you try to divide by zero, there is no exception. The result is just zero. If you want to trap

division by zero, you’ll have to test for a zero denominator explicitly.

There is also no exception for dividing the most negative integer by −1. You just get the most

negative integer back.

None of the multiplication or division operations set flags.

There is no instruction for calculating the remainder. You can do that manually by

calculating r = n − (n ÷ d) × d. This can be done by following up the division with an msub :

 ; unsigned remainder after division

 udiv Rq, Rn, Rm ; Rq = Rn ÷ Rm

 msub Rr, Rq, Rm, Rn ; Rr = Rn - Rq × Rm

 ; = Rn - (Rn ÷ Rm) × Rm

 ; signed remainder after division

 sdiv Rq, Rn, Rm ; Rq = Rn ÷ Rm

 msub Rr, Rq, Rm, Rn ; Rr = Rn - Rq × Rm

 ; = Rn - (Rn ÷ Rm) × Rm

Next time, we’ll look at the logical operations and their extremely weird immediates.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

4/4

