
1/4

July 29, 2022

The AArch64 processor (aka arm64), part 4: Addition and
subtraction

devblogs.microsoft.com/oldnewthing/20220729-00

Raymond Chen

Most of the binary operation instructions are of the form

 op x, y, z x = y op z

They take two source operands, combine them according to some operation, and put the

result in the destination register.

Similarly, most of the unary operation instructions look like

 op x, y ; x = op y

The destination is typically a numbered register or sp, and can be a 64-bit register or a 32-bit

subregister. If you use a 32-bit subregister, then the result is zero-extended to a 64-bit value.

Okay, let’s start with addition:

 add Rd/sp, Rn/sp, #imm12

 add Rd/sp, Rn/sp, #imm12, LSL #12

 add Rd/zr, Rn/zr, Rm/zr, LSL #n

 add Rd/zr, Rn/zr, Rm/zr, LSR #n

 add Rd/zr, Rn/zr, Rm/zr, ASR #n

 add Rd/sp, Rn/sp, Rm/zr, UXTB #n ; 0 ≤ n ≤ 4

 add Rd/sp, Rn/sp, Rm/zr, UXTH #n ; 0 ≤ n ≤ 4

 add Rd/sp, Rn/sp, Rm/zr, UXTW #n ; 0 ≤ n ≤ 4

 add Rd/sp, Rn/sp, Rm/zr, UXTX #n ; 0 ≤ n ≤ 4

 add Rd/sp, Rn/sp, Rm/zr, SXTB #n ; 0 ≤ n ≤ 4

 add Rd/sp, Rn/sp, Rm/zr, SXTH #n ; 0 ≤ n ≤ 4

 add Rd/sp, Rn/sp, Rm/zr, SXTW #n ; 0 ≤ n ≤ 4

 add Rd/sp, Rn/sp, Rm/zr, SXTX #n ; 0 ≤ n ≤ 4

To ask for flags to be set based on the result, apply an S suffix to the opcode, producing

ADDS .

Note that some of these encodings permit the operand to be sp , but others allow zr .

https://devblogs.microsoft.com/oldnewthing/20220729-00/?p=106915

2/4

The first two versions add an immediate. It is either a 12-bit unsigned immediate (0 ≤ n ≤

4095) or a 12-bit unsigned immediate shifted left by 12. This means that you can express

constants of the form 0x00000XXX and 0x00XXX000 . The disassembler does the LSL #12

for you, so you won’t actually see the #imm12, LSL #12 version disassembled as such.

Instead, you’ll see the shifted constant:

 add x0, x1, #0x123000 ; encoded as #0x123, LSL #12

The next block of variants adds a shifted register. You are allowed to shift doublewords by up

to 63 positions and words up to 31 positions. You don’t need any larger shifts, because

unsigned shifting by an amount greater than or equal to the operand bit size just gives you

zero, so you should just have used zr. And signed shifting right by an amount greater than or

equal to the operand size is the same as shifting right by one less than the operand bit size.

The last block lets you use the extended registers. You can use all of the extended forms, and

the shift amount can be up to four positions. These extended registers with shifts are

convenient for calculating array offsets:

 ; x0 = x1 + (int32_t)x2 * 16

 add x0, x1, x2, SXTW #4

In this case, x1 is the base of an array where each element is of size 16, and x2 is a 32-bit

signed array index, and we calculate the address of the element into x0.

The ARM uses true carry. This means that for subtraction, the carry is clear when a borrow

occurs, and subtract with carry subtracts an additional unit if inbound carry is clear.

The subtraction instruction has the same available variants as the addition instructions.

 ; calculate x = y - z

 sub x, y, z ; same options as add

 ; calculate x = y - z, set flags

 subs x, y, z ; same options as adds

Adding and subtracting with carry have only one encoding option.

 ; Rd = Rn + Rm + carry

 adc Rd/zr, Rn/zr, Rm/zr

 ; Rd = Rn + Rm + carry, set flags

 adcs Rd/zr, Rn/zr, Rm/zr

 ; Rd = Rn - Rm - !carry

 sbc Rd/zr, Rn/zr, Rm/zr

 ; Rd = Rn - Rm - !carry, set flags

 sbcs Rd/zr, Rn/zr, Rm/zr

3/4

From the addition and subtraction instructions, we can construct these pseudo-instructions,

taking advantage of literal zeros and the hard-coded zero register: Reads from the zero

register produce zero, and writes to the zero register are discarded.

 ; move register to/from sp

 mov sp, Rn ; add sp, Rn, #0

 mov Rn, sp ; add Rn, sp, #0

 ; move constant to register

 mov Rn, #imm12 ; add Rn, zr, #imm12

 mov Rn, #imm12, LSL #12 ; add Rn, zr, #imm12, LSL #12

Adding zero gives you the ability to move between sp and the general-purpose registers. And

adding an immediate to the zero register loads a constant. We’ll see later that other register-

to-register moves are encoded with a different pseudo-instruction, and there are plenty of

options for loading constants beyond just this one.

The use of true carry permits the following group of pseudo-instructions for adding or

subtracting negative numbers:

 add a, b, #-n ; sub a, b, #n

 adds a, b, #-n ; subs a, b, #n

 sub a, b, #-n ; add a, b, #n

 subs a, b, #-n ; adds a, b, #n

The immediate operand to the ADD and SUB instruction families is treated as unsigned,

but you can switch to the opposite instruction to get negative values (provided n ≠ 0). Note

that this works due to ARM’s use of true carry. (If ARM had used borrow, then this

conversion would set the carry bit incorrectly.)

 cmp x, y ; subs zr, x, y

 cmn x, y ; adds zr, x, y

The compare and compare negative instructions are just subtraction and addition that set

flags and throw away the result. Beware of the lie hiding inside the CMN instruction.

 ; negate (possibly setting flags)

 neg x, y, shift ; sub x, zr, y, shift

 negs x, y, shift ; subs x, zr, y, shift

 ; negate with carry (possibly setting flags)

 ngc x, y, shift ; sbc x, zr, y, shift

 ngcs x, y, shift ; sbcs x, zr, y, shift

Subtracting from zero gives you the ability to negate a value. Note that these pseudo-

instructions are available only with shifted registers because the corresponding subtraction

instructions support zr as the first input only when the second input is a shifted register. (Of

https://devblogs.microsoft.com/oldnewthing/20210607-00/?p=105288

4/4

course, you can shift by #0 if you didn’t really want to shift the second input.)

That turned out to be a lot to say about addition and subtraction. Next time, we’ll look at the

fancier arithmetic operations: Multiplication and division.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

