
1/4

July 28, 2022

The AArch64 processor (aka arm64), part 3: Addressing
modes

devblogs.microsoft.com/oldnewthing/20220728-00

Raymond Chen

Every addressing mode on AArch64 begins with a base register, which can be any numbered

register or sp. On top of that, you can add various sprinkles.

In the discussion, the term size refers to the size of the data being transferred, and sizeshift is

the base-2 logarithm of that size:

Operand size sizeshift

byte 1 0

halfword 2 1

word 4 2

doubleword 8 3

For illustration purposes, I’ll use the LDR instruction, which loads a register.

Register indirect with offset

 ldr x0, [Xn/sp, #imm]

 ldr x0, [Xn/sp] ; #0 is implied if omitted

This loads a value from the address calculated by adding the immediate to the value in the Xn

register or sp.

The immediate can be a signed integer offset in the range −256 to +255, or an unsigned

multiple of the operand size up to 4095 × size.

Size Signed reach Unsigned reach

byte −256 to +255 0 to   4095

https://devblogs.microsoft.com/oldnewthing/20220728-00/?p=106912

2/4

halfword 0 to   8190

word 0 to 16380

doubleword 0 to 32760

Register indirect with pre-increment

Putting an exclamation point after the close-bracket means that the calculated effective

address is written back to the base register.

 ; load from (Xn/sp + imm)

 ; then set Xn/sp = Xn/sp + imm

 ldr x0, [Xn/sp, #imm]!

Register indirect with post-increment

Putting the immediate offset outside the close-bracket means that the base register is

adjusted after the memory is read.

 ; load from Xn/sp

 ; then set Xn/sp = Xn/sp + imm

 ldr x0, [Xn/sp], #imm

PC-relative with offset

 ldr x0, [pc, #imm]

The PC-relative addressing mode reads memory from a position given as a signed offset from

the current instruction. The offset must be a multiple of 4, and the reach is ±1MB.

This instruction is typically used to load large constants from memory, and the disassembler

does the math for you and decodes it as

 ldr x0, =imm

by calculating the effective address and fetching the value from that location.

The assembler typically generates literals into the code segment between subroutines, and

the large reach of this instruction means that the need to dump literals prematurely is largely

a thing of the past. (By comparison, AArch32’s PC-relative addressing mode had a reach of

only ±4KB, so it was not uncommon to dump literals in the middle of a function.)

Register indirect with index

 ldr x0, [Xn/sp, Rn/zr, extend]

3/4

This addressing mode takes the Rn/zr, transforms it according to the extended register

operation extend, and adds the result to the Xn/sp register to form the final address.

For memory access, the following extended register operations are available:

UXTW

UXTX (aka LSL)

SXTW

SXTX

The only acceptable shifts are zero and sizeshift. This means that the index register can be

treated either as a byte offset or as an element index, where the element is the size of the

operand. For example, if you are loading a halfword, then the index register is either a byte

offset of a halfword index.

Writing out all the possibilities produces these possible extended registers:

Extended Effective address Index format

[a, b, UXTW #0]

[a, b, UXTW]

a + (uint32_t)b 32-
bit

unsigned byte offset.

[a, b, UXTW
#sizeshift]

a + (uint32_t)b *
size

32-
bit

unsigned element
offset.

[a, b, SXTW #0]

[a, b, SXTW]

a + (int32_t)b 32-
bit

signed byte offset.

[a, b, SXTW
#sizeshift]

a + (int32_t)b *
size

32-
bit

signed element
offset.

[a, b, UXTX #0]

[a, b, UXTX]

[a, b, LSL #0]

[a, b]

a + (uint64_t)b 64-
bit

unsigned byte offset.

[a, b, UXTX
#sizeshift]

[a, b, LSL
#sizeshift]

a + (uint64_t)b *
size

64-
bit

unsigned element
offset.

[a, b, SXTX #0] a + (int64_t)b 64-
bit

signed byte offset.

[a, b, SXTX
#sizeshift]

a + (int64_t)b *
size

64-
bit

signed element
offset.

If no extended operation is provided, it defaults to UXTX #0 , which means “use the whole

register, no shift.”

4/4

There is no pre-increment or post-increment option for the indexed addressing modes.

Okay, so those are the addressing modes. Quite a lot to choose from. Next time, we’ll start

doing arithmetic.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

